cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A066586 Number of normal subgroups of the group of n X n signed permutations matrices (described in sequence A066051).

Original entry on oeis.org

2, 6, 9, 11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 07 2002

Keywords

Comments

The similar sequence for the "ordinary" symmetric group S_n is 1, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...

Crossrefs

Cf. A066051.

Formula

For n>=5 a(n) = 9.

A000898 a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.

Original entry on oeis.org

1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, 30710464, 186753920, 1171979904, 7573069568, 50305536256, 342949298688, 2396286830080, 17138748412928, 125336396368896, 936222729254912, 7136574106003456, 55466948299223040, 439216305474605056, 3540846129311916032
Offset: 0

Views

Author

Keywords

Comments

Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
Also the value of the n-th derivative of exp(x^2) evaluated at 1. - N. Calkin, Apr 22 2010
For n >= 1, a(n) is also the sum of the degrees of the irreducible representations of the group of n X n signed permutation matrices (described in sequence A066051). The similar sum for the "ordinary" symmetric group S_n is in sequence A000085. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 12 2002
It appears that this is also the number of permutations of 1, 2, ..., n+1 such that each term (after the first) is within 2 of some preceding term. Verified for n+1 <= 6. E.g., a(4) = 20 because of the 24 permutations of 1, 2, 3, 4, the only ones not permitted are 1, 4, 2, 3; 1, 4, 3, 2; 4, 1, 2, 3; and 4, 1, 3, 2. - Gerry Myerson, Aug 06 2003
Hankel transform is A108400. - Paul Barry, Feb 11 2008
From Emeric Deutsch, Jun 19 2010: (Start)
Number of symmetric involutions of [2n]. Example: a(2)=6 because we have 1234, 2143, 1324, 3412, 4231, and 4321. See the Egge reference, pp. 419-420.
Number of symmetric involutions of [2n+1]. Example: a(2)=6 because we have 12345, 14325, 21354, 45312, 52341, and 54321. See the Egge reference, pp. 419-420.
(End)
Binomial convolution of sequence A000085: a(n) = Sum_{k=0..n} binomial(n,k)*A000085(k)*A000085(n-k). - Emanuele Munarini, Mar 02 2016
The sequence can be obtained from the infinite product of 2 X 2 matrices [(1,N); (1,1)] by extracting the upper left terms, where N = (1, 3, 5, ...), the odd integers. - Gary W. Adamson, Jul 28 2016
Apparently a(n) is the number of standard domino tableaux of size 2n, where a domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. - Gus Wiseman, Feb 25 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 20*x^3 + 76*x^4 + 312*x^5 + 1384*x^6 + 6512*x^7 + ...
The a(3) = 20 domino tableaux:
1 1 2 2 3 3
.
1 2 2 3 3
1
.
1 2 3 3   1 1 3 3   1 1 2 2
1 2       2 2       3 3
.
1 1 3 3   1 1 2 2
2         3
2         3
.
1 2 3   1 2 2   1 1 3
1 2 3   1 3 3   2 2 3
.
1 3 3   1 2 2
1       1
2       3
2       3
.
1 2   1 1   1 1
1 2   2 3   2 2
3 3   2 3   3 3
.
1 3   1 2   1 1
1 3   1 2   2 2
2     3     3
2     3     3
.
1 1
2
2
3
3
.
1
1
2
2
3
3 - _Gus Wiseman_, Feb 25 2018
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.1.4 Exer. 31.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000898 n = a000898_list !! n
    a000898_list = 1 : 2 : (map (* 2) $
       zipWith (+) (tail a000898_list) (zipWith (*) [1..] a000898_list))
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Maple
    # For Maple program see A000903.
    seq(simplify((-I)^n*HermiteH(n, I)), n=0..25); # Peter Luschny, Oct 23 2015
  • Mathematica
    a[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 17 2011, after Vladeta Jovovic *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2(a[n-1]+(n-1)a[n-2])},a,{n,30}] (* Harvey P. Dale, Aug 04 2012 *)
    Table[Abs[HermiteH[n, I]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    a[ n_] := Sum[ 2^(n - 2 k) n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Oct 23 2015 *)
  • Maxima
    makelist((%i)^n*hermite(n,-%i),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp(2*x + x^2 + x * O(x^n)), n))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    {a(n) = if( n<2, max(0, n+1), 2*a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(2*x+x^2))) \\ Joerg Arndt, Oct 04 2013
    
  • PARI
    {a(n) = sum(k=0, n\2, 2^(n - 2*k) * n! / (k! * (n - 2*k)!))}; /* Michael Somos, Oct 23 2015 */
    

Formula

a(n) = Sum_{m=0..n} |A060821(n,m)| = H(n,-i)*i^n, with the Hermite polynomials H(n,x); i.e., these are row sums of the unsigned triangle A060821.
E.g.f.: exp(x*(x + 2)).
a(n) = 2 * A000902(n) for n >= 1.
a(n) = Sum_{k=0..n} binomial(n,2k)*binomial(2k,k)*k!*2^(n-2k). - N. Calkin, Apr 22 2010
Binomial transform of A047974. - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k). - Vladeta Jovovic, Oct 01 2003
From Paul Barry, Aug 29 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} A001498(n-k, k) * 2^(n-k).
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2) * 2^((n+k)/2) * (1+(-1)^(n-k))/2. (End)
For asymptotics, see the Robinson paper. [This is disputed by Yen-chi R. Lin. See below, Sep 30 2013.]
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * C(n,2*k) * (2*k)!/k!. - Paul Barry, Feb 11 2008
G.f.: 1/(1 - 2*x - 2*x^2/(1 - 2*x - 4*x^2/(1 - 2*x - 6*x^2/(1 - 2*x - 8*x^2/(1 - ... (continued fraction). - Paul Barry, Feb 25 2010
E.g.f.: exp(x^2 + 2*x) = Q(0); Q(k) = 1 + (x^2 + 2*x)/(2*k + 1 - (x^2 + 2*x)*(2*k + 1)/((x^2 + 2*x) + (2*k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x*k - x - x/(1 - 2*x*(k + 1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
a(n) = (2*n/e)^(n/2) * exp(sqrt(2*n)) / sqrt(2*e) * (1 + sqrt(2/n)/3 + O(n^(-1))). - Yen-chi R. Lin, Sep 30 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n >= 0. - Michael Somos, Oct 23 2015
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k)*B(n, k), where B are the Bessel numbers A100861. - Peter Luschny, Jun 04 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 21 2001
Initial condition a(0)=1 added to definition by Jon E. Schoenfield, Oct 01 2013
More terms from Joerg Arndt, Oct 04 2013

A303735 a(n) is the metric dimension of the n-dimensional hypercube.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8
Offset: 1

Views

Author

Manuel E. Lladser, Apr 29 2018

Keywords

Comments

The metric dimension of a graph is the least number of nodes needed to characterize uniquely any other vertex by its vector of distances to those nodes. Determining the metric dimension of a general graph is a known NP-complete problem. It is not known, however, whether or not the metric dimension of hypercubes is NP-complete.
The nondecreasing sequence a(n) provides the metric dimension of the n-dimensional hypercube (i.e., with 2^n vertices) for 1 <= n <= 10, computed by brute force. Using an approximation algorithm, Mladenović et al. claim that the next seven terms in the sequence are 8, 8, 8, 9, 9, 10, 10.
Observation: first 11 terms coincide with A187103. - Omar E. Pol, Apr 29 2018 [updated by Pontus von Brömssen, Apr 06 2023]
Independent Verfication: Using the MaxSat solver RC2 (Ignatiev et al., 2019), and symmetry breaking constraints, I have verified the first 10 terms. In the previous references given, it is not clear which of the terms have been verified and which only have upper bounds verified. - Victor S. Miller, Mar 27 2023

Examples

			The metric dimension of a complete graph on n vertices (denoted as K_n) is (n - 1). For n = 1 the hypercube is isomorphic to K_2, so a(1)=1.
For n = 2, the hypercube has vertices (0,0), (0,1), (1,0), and (1,1), which form a simple cycle. Since each of these nodes has two other nodes at the same distance from it, a(2) >= 2. Using nodes (0,1) and (1,1) to encode all nodes by their distance to these two nodes, we find that (0,0) <-> (1,2); (0,1) <-> (0,1); (1,0) <-> (2,1); and (1,1) <-> (1,0). Since the vectors of distances (1,2), (0,1), (2,1), and (1,0) are all different, a(2) = 2.
		

References

  • Harary, F. and Melter, R. A. "On the metric dimension of a graph." Ars Combinatoria, 2:191-195 (1976).

Crossrefs

Cf. A008949 (number of vertices on the hypercube graph Q_n whose distance from a reference vertex is <= k).
Cf. A066051 (number of automorphisms of hypercubes).
Cf. A187103.

Extensions

a(11) from Victor S. Miller, Apr 04 2023
a(12)-a(13) from Victor S. Miller, May 03 2023

A066532 If n is odd a(n) = 1, if n is even a(n) = 2^(n-1).

Original entry on oeis.org

1, 2, 1, 8, 1, 32, 1, 128, 1, 512, 1, 2048, 1, 8192, 1, 32768, 1, 131072, 1, 524288, 1, 2097152, 1, 8388608, 1, 33554432, 1, 134217728, 1, 536870912, 1, 2147483648, 1, 8589934592, 1, 34359738368, 1, 137438953472, 1, 549755813888, 1, 2199023255552
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 06 2002

Keywords

Comments

Size of Frattini subgroup of the group of n X n signed permutations matrices (described in sequence A066051).

Crossrefs

Programs

  • Maple
    A066532:=n->(2 - (n mod 2))^(n - 1): seq(A066532(n), n=1..50); # Wesley Ivan Hurt, Jul 21 2014
  • Mathematica
    Table[ If[ OddQ[n], 1, 2^(n - 1)], {n, 42} ]
  • PARI
    a(n) = { if (n%2, 1, 2^(n-1)) } \\ Harry J. Smith, Feb 22 2010

Formula

G.f.: 1/(1-x^2) + 2*x*(1+2*x^2)/(1-2*x^2). - Paul Barry, Jun 17 2006
a(n) = 2^n*(1-(-1)^n)/2+(1+(-1)^n)/2. - Paul Barry, Jun 17 2006
E.g.f.: sinh(x) + sinh(x)^2. - Arkadiusz Wesolowski, Aug 13 2012
a(n) = (2 - (n mod 2))^(n - 1). - Wesley Ivan Hurt, Jul 21 2014

Extensions

More terms from Robert G. Wilson v, Jan 07 2002
More terms from Ralf Stephan, Jul 25 2003
Showing 1-4 of 4 results.