cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A066151 Smallest n-digit number with A066150(n) divisors.

Original entry on oeis.org

6, 60, 840, 7560, 83160, 720720, 8648640, 73513440, 735134400, 6983776800, 97772875200, 963761198400, 9316358251200, 97821761637600, 866421317361600, 8086598962041600, 74801040398884800, 897612484786617600
Offset: 1

Views

Author

N. J. A. Sloane, Dec 13 2001

Keywords

Comments

Also largest highly composite number(A002182) with n digits. - Amiram Eldar, Jul 02 2019

Examples

			a(1) = 6 since 6 has 4 divisors and that is the record for 1-digit numbers.
a(1) = 6 since 6 has 4 divisors and k has at most 3 divisors for k < 6 and not more than 4 divisors for 6 < k <= 9.
		

Crossrefs

Cf. A005179, A066150. Subsequence of A002182.

Programs

  • PARI
    a066151(m,n) = local(d,a,k,b,c); for(d=m,n,a=0; for(k=10^d,10^(d+1)-1,b=numdiv(k); if(b>a,a=b; c=k)); print1(c,","))

Formula

a(n) = A005179(A066150(n)). - Max Alekseyev, Apr 29 2010

Extensions

More terms from Klaus Brockhaus, Dec 17 2001
More terms from David Wasserman, Jan 25 2002

A240544 Table (read by rows) of all k-digit positive integers (in ascending order) with maximum number of divisors A066150(k).

Original entry on oeis.org

6, 8, 60, 72, 84, 90, 96, 840, 7560, 9240, 83160, 98280, 720720, 831600, 942480, 982800, 997920, 8648640, 73513440, 82162080, 86486400, 91891800, 98017920, 99459360, 735134400, 821620800, 931170240, 994593600, 6983776800, 8454045600, 9311702400, 9448639200, 9777287520, 97772875200, 963761198400
Offset: 1

Views

Author

Martin Renner, Apr 07 2014

Keywords

Comments

The number of elements in row k is A240543(k).

Examples

			The table T(k,m), m = 1..A240543(k), begins
6, 8;
60, 72, 84, 90, 96;
840;
etc.
		

Crossrefs

Extensions

a(29)-a(35) from Giovanni Resta, Apr 08 2014

A240543 Number of n-digit positive integers with maximum number of divisors A066150(n).

Original entry on oeis.org

2, 5, 1, 2, 2, 5, 1, 6, 4, 5, 1, 1, 2, 1, 2, 3, 7, 2
Offset: 1

Views

Author

Martin Renner, Apr 07 2014

Keywords

Examples

			a(1) = 2, since two 1-digit numbers have the maximum number of divisors 4 = #{1, 2, 3, 6} = #{1, 2, 4, 8}.
a(2) = 5, since five 2-digit numbers have the maximum number of divisors 12 = #{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} = #{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72} = #{1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84} = #{1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90} = #{1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}.
		

Crossrefs

Extensions

a(10)-a(12) from Giovanni Resta, Apr 08 2014
a(13)-a(18) from Kevin P. Thompson, Sep 04 2022

A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2007

Keywords

Comments

a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

Formula

G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024

A284398 Table read by rows: T(n,k) is the number of n-digit numbers that have exactly k divisors.

Original entry on oeis.org

1, 4, 2, 2, 0, 21, 2, 30, 2, 16, 1, 10, 1, 2, 0, 5, 0, 143, 7, 260, 1, 94, 1, 170, 7, 20, 0, 92, 0, 5, 4, 47, 0, 17, 0, 11, 1, 0, 0, 16, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1061, 14, 2316, 1, 654, 0, 1934, 24, 128, 1, 943, 1, 36, 11, 753, 0, 142, 0, 146, 4, 3, 0, 433
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 26 2017

Keywords

Comments

Rows begin with row 1: [1, 4, 2, 2] for the nine 1-digit numbers 1..9 (of which one (1) has one divisor, four (the primes: 2, 3, 5, and 7) have two, two (2^2 = 4 and 3^2 = 9) have three, and two (2*3 = 6 and 2^3 = 8) have four).
The successive rows have lengths 4, 12, 32, 64, 128, 240, ... (A066150).

Examples

			Table begins:
row 1: 1, 4, 2, 2;
row 2: 0, 21, 2, 30, 2, 16, 1, 10, 1, 2, 0, 5;
row 3: 0, 143, 7, 260, 1, 94, 1, 170, 7, 20, 0, 92, 0, 5, 4, 47, 0, 17, 0, 11, 1, 0, 0, 16, 0, 0, 1, 1, 0, 1, 0, 1;
row 4: 0, 1061, 14, 2316, 1, 654, 0, 1934, 24, 128, 1, 943, 1, 36, 11, 753, 0, 142, 0, 146, 4, 3, 0, 433, 1, 0, 6, 29, 0, 43, 0, 129, 1, 0, 1, 80, 0, 0, 0, 36, 0, 7, 0, 0, 3, 0, 0, 45, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2;
		

Crossrefs

Columns k=1..6 give A000007, A006879, A379566, A379567, A379568, A379569.
Length of n-th row is A066150(n).
Cf. A000005 (number of divisors).

Programs

  • Mathematica
    Table[Block[{t = KeySort[10^n - 1 + PositionIndex@ DivisorSigma[0, #] &@ Range[10^n, 10^(n + 1) - 1]]}, ReplacePart[ConstantArray[0, Max@ Keys@ t], Map[# -> Length@ Lookup[t, #] &, Keys@ t]]], {n, 0, 3}] (* Michael De Vlieger, Nov 01 2017 *)

A069650 Largest n-digit number with maximal number of divisors.

Original entry on oeis.org

8, 96, 840, 9240, 98280, 997920, 8648640, 99459360, 994593600, 9777287520, 97772875200, 963761198400, 9958865716800, 97821761637600, 978217616376000, 9651747148243200, 98930408269492800, 994651672331116800
Offset: 1

Views

Author

Amarnath Murthy, Apr 04 2002

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Jun 27 2004
a(8)-a(10) from Max Alekseyev, Apr 30 2010
a(11)-a(18) from Jon E. Schoenfield, May 11 2010
Showing 1-6 of 6 results.