A069142 Primes p such that p+2, 2p+1, and 2p+3 are also prime.
5, 29, 659, 809, 2129, 2549, 3329, 3389, 5849, 6269, 10529, 33179, 41609, 44129, 53549, 55439, 57329, 63839, 65099, 70379, 70979, 72269, 74099, 74759, 78779, 80669, 81929, 87539, 93239, 102299, 115469, 124769, 133979, 136949, 156419
Offset: 1
Examples
659 and 661 form a prime twin pair. Their sum is 1320. 1320 is sandwiched between 1319 and 1321, which form another prime twin pair. So 659 is in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(160000) | IsPrime(p+2) and IsPrime(2*p+1) and IsPrime(2*p+3)]; // Vincenzo Librandi, Apr 09 2013
-
Mathematica
p = q = 1; Do[q = Prime[n]; If[p + 2 == q && PrimeQ[2p + 1] && PrimeQ[2p + 3], Print[p]]; p = q, {n, 1, 10^4}] Select[Prime[Range[15000]], PrimeQ[# + 2] && PrimeQ[2 # + 1] && PrimeQ[2 # + 3]&] (* Vincenzo Librandi, Apr 09 2013 *)
-
PARI
forprime(p=1,10^5,if(isprime(p+2)&&isprime(2*p+1)&&isprime(2*p+3),print1(p,", "))) \\ Derek Orr, Mar 11 2015
Formula
a(n) = A066388(n)-1. - R. J. Mathar, Nov 02 2023
Extensions
Edited and extended by Robert G. Wilson v, Apr 11 2002
Comments