cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A066498 Numbers k such that 3 divides phi(k).

Original entry on oeis.org

7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 31, 35, 36, 37, 38, 39, 42, 43, 45, 49, 52, 54, 56, 57, 61, 62, 63, 65, 67, 70, 72, 73, 74, 76, 77, 78, 79, 81, 84, 86, 90, 91, 93, 95, 97, 98, 99, 103, 104, 105, 108, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Comments

Numbers k such that x^3 == 1 (mod k) has solutions 1 < x < k.
Terms are multiple of 9 or of a prime of the form 6k+1.
If k is a term of this sequence, then G = is a non-abelian group of order 3k, where 1 < r < n and r^3 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, Mar 21 2021

Examples

			If n < 7 then x^3 = 1 (mod n) has no solution 1 < x < n, but {2,4} are solutions to x^3 == 1 (mod 7), hence a(1) = 7.
		

Crossrefs

Complement of A088232.
A007645 gives the primes congruent to 1 mod 3.
Column k=2 of A277915.

Programs

  • Mathematica
    Select[Range[150], Divisible[EulerPhi[#], 3]&] (* Harvey P. Dale, Jan 12 2011 *)
  • PARI
    isok(k)={ eulerphi(k)%3 == 0 } \\ Harry J. Smith, Feb 18 2010

Extensions

Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Corrected and extended by Ray Chandler, Nov 05 2003

A319101 Number of solutions to x^7 == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7
Offset: 1

Views

Author

Jianing Song, Sep 10 2018

Keywords

Comments

All terms are powers of 7. Those n such that a(n) > 1 are in A066502.

Examples

			Solutions to x^7 == 1 (mod 29): x == 1, 7, 16, 20, 23, 24, 25 (mod 29).
Solutions to x^7 == 1 (mod 43): x == 1, 4, 11, 16, 21, 35, 41 (mod 43).
Solutions to x^7 == 1 (mod 49): x == 1, 8, 15, 22, 29, 36, 43 (mod 49) (x == 1 (mod 7)).
		

Crossrefs

Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), this sequence (k=7), A247257 (k=8).
Mobius transform gives A307382.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 7] == 1, 7, 1]; f[7, 1] = 1; f[7, e_] := 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
  • PARI
    a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(7, Z[i]))

Formula

Multiplicative with a(7) = 1, a(7^e) = 7 if e >= 2; for other primes p, a(p^e) = 7 if p == 1 (mod 7), a(p^e) = 1 otherwise.
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(7, k_i).
a(n) = A000010(n)/A293484(n). - Jianing Song, Nov 10 2019

A066500 Numbers k such that 5 divides phi(k).

Original entry on oeis.org

11, 22, 25, 31, 33, 41, 44, 50, 55, 61, 62, 66, 71, 75, 77, 82, 88, 93, 99, 100, 101, 110, 121, 122, 123, 124, 125, 131, 132, 142, 143, 150, 151, 154, 155, 164, 165, 175, 176, 181, 183, 186, 187, 191, 198, 200, 202, 205, 209, 211, 213, 217, 220, 225, 231, 241
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Comments

Related to the equation x^5 == 1 (mod k): sequence gives values of k such there are solutions 1 < x < k of x^5 == 1 (mod k).
If k is a term of this sequence, then G = is a non-abelian group of order 5k, where 1 < r < n and r^5 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, May 23 2022

Examples

			x^5 == 1 (mod 11) has solutions 1 < x < 11, namely {3,4,5,9}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], Divisible[EulerPhi[#], 5] &] (* Amiram Eldar, May 23 2022 *)
  • PARI
    isok(k) = { eulerphi(k)%5 == 0 } \\ Harry J. Smith, Feb 18 2010

Formula

a(n) are the numbers generated by 5^2 = 25 and all primes congruent to 1 mod 5 (A045453). Hence sequence gives all k such that k == 0 (mod A045453(n)) for some n > 1 or k == 0 (mod 25).

Extensions

Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Extended by Ray Chandler, Nov 06 2003

A066499 Numbers k such that phi(k) == 2 (mod 4).

Original entry on oeis.org

3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 31, 38, 43, 46, 47, 49, 54, 59, 62, 67, 71, 79, 81, 83, 86, 94, 98, 103, 107, 118, 121, 127, 131, 134, 139, 142, 151, 158, 162, 163, 166, 167, 179, 191, 199, 206, 211, 214, 223, 227, 239, 242, 243, 251, 254, 262, 263, 271
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Comments

Related to the equation x^4 = 1 (mod y): sequence gives values of n such x^4 = 1 (mod n) has no solution 1 < x < n-1.
k is of the form p^m or 2*p^m where p is A002145 (with the exception of a(2)=4).
All prime numbers here belong also to A002145, prime numbers of the form 4n+3. - Enrique Pérez Herrero, Sep 07 2011

References

  • W. J. LeVeque, Fundamentals of Number Theory, pp. 57 Problem 15, Dover NY 1996.

Crossrefs

Essentially the same as A097987.
Cf. A002145.

Programs

  • Mathematica
    Select[Range[300],Mod[EulerPhi[#],4]==2&] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    isok(k) = { eulerphi(k)%4 == 2 } \\ Harry J. Smith, Feb 18 2010

Extensions

Simpler definition from Lekraj Beedassy, Jul 21 2003
Corrected and extended by Ray Chandler, Nov 06 2003

A277915 A(n,k) is the n-th number m such that a nontrivial prime(k)-th root of unity modulo m exists; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

8, 7, 12, 11, 9, 15, 29, 22, 13, 16, 23, 43, 25, 14, 20, 53, 46, 49, 31, 18, 21, 103, 79, 67, 58, 33, 19, 24, 191, 137, 106, 69, 71, 41, 21, 28, 47, 229, 206, 131, 89, 86, 44, 26, 30, 59, 94, 361, 239, 157, 92, 87, 50, 27, 32, 311, 118, 139, 382, 274, 158, 115, 98, 55, 28, 33
Offset: 1

Views

Author

Alois P. Heinz, Nov 03 2016

Keywords

Comments

The trivial square roots of unity modulo m are {1, m-1} and for an odd prime p the trivial p-th root of unity modulo m is 1.
There is no prime in the first column.
Column k>1 contains prime(k)^2.

Examples

			Square array A(n,k) begins:
:  8,  7, 11, 29,  23,  53, 103, 191, ...
: 12,  9, 22, 43,  46,  79, 137, 229, ...
: 15, 13, 25, 49,  67, 106, 206, 361, ...
: 16, 14, 31, 58,  69, 131, 239, 382, ...
: 20, 18, 33, 71,  89, 157, 274, 419, ...
: 21, 19, 41, 86,  92, 158, 289, 457, ...
: 24, 21, 44, 87, 115, 159, 307, 458, ...
: 28, 26, 50, 98, 121, 169, 309, 571, ...
		

Crossrefs

Columns k=1-4 give: A033949, A066498, A066500, A066502.
Row n=1 gives A066674 for k>1.
Main diagonal gives A305828.

Programs

  • Maple
    with(numtheory):
    A:= proc() local j, l; l:= proc() [] end;
          proc(n, k)
            while nops(l(k)) lambda(j) or k>1 and
                      irem(phi(j), ithprime(k))=0 then
                      l(k):= [l(k)[], j]; break fi
              od
            od: l(k)[n]
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
  • Mathematica
    A[n_, k_] := Module[{j, l = {}}, While[Length[l]CarmichaelLambda[j] || k>1 && Mod[EulerPhi[j], Prime[k]]==0, AppendTo[l, j]; Break[]]]]; l[[n]]];
    Table[A[n, 1 + d - n], {d, 1, 15}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)

A066501 Numbers k such that x^6 == 1 (mod(k)) has no solution 1 < x < k-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 11, 17, 22, 23, 25, 29, 34, 41, 46, 47, 50, 53, 58, 59, 71, 82, 83, 89, 94, 101, 106, 107, 113, 118, 121, 125, 131, 137, 142, 149, 166, 167, 173, 178, 179, 191, 197, 202, 214, 226, 227, 233, 239, 242, 250, 251, 257, 262, 263, 269, 274, 281, 289, 293
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {for (x=2, n-2, if ((Mod(x, n)^6) == Mod(1, n), return (0));); return (1);} \\ Michel Marcus, Nov 20 2013

Formula

Sequence consists of the numbers 4, 6 and for all k > 1, A045309(k), 2*A045309(k), A045309(k)^2, 2*A045309(k)^2.

Extensions

Extended by Ray Chandler, Nov 06 2003
Terms 1, 2 and 3 prepended by Michel Marcus, Nov 20 2013

A172019 Numbers k such that 4 divides phi(k) (i.e., A000010(k)).

Original entry on oeis.org

5, 8, 10, 12, 13, 15, 16, 17, 20, 21, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2010

Keywords

Comments

Complement of A097987.
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, Feb 12 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Mod[EulerPhi[#], 4] == 0 &] (* Geoffrey Critzer, Nov 30 2014 *)
  • PARI
    is(n)=my(o=valuation(n, 2), p); (o>1 || !isprimepower(n>>o, &p) || p%4<2) && n>4 \\ Charles R Greathouse IV, Mar 05 2013

A045465 Primes congruent to {0, 1} mod 7.

Original entry on oeis.org

7, 29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 7 in {0, 1} ]; // Vincenzo Librandi, Aug 13 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{0,1},Mod[#,7]]&] (* Vincenzo Librandi, Aug 13 2012 *)

A358043 Numbers k such that phi(k) is a multiple of 8.

Original entry on oeis.org

15, 16, 17, 20, 24, 30, 32, 34, 35, 39, 40, 41, 45, 48, 51, 52, 55, 56, 60, 64, 65, 68, 70, 72, 73, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 95, 96, 97, 100, 102, 104, 105, 110, 111, 112, 113, 115, 116, 117, 119, 120, 123, 128, 130, 132, 135, 136, 137, 140, 143
Offset: 1

Views

Author

Darío Clavijo, Oct 26 2022

Keywords

Crossrefs

Cf. A000010 (phi), A053574 (its 2-adic valuation), A037074 (a subsequence).
Totient multiples: A066498 (3), A172019 (4), A066500 (5), A066502 (7), A332512 (12).

Programs

  • Mathematica
    Select[Range[150], Divisible[EulerPhi[#], 8] &] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    isok(k) = Mod(eulerphi(k), 8) == 0; \\ Michel Marcus, Oct 27 2022
  • Python
    from sympy.ntheory import totient
    def isok(n): return totient(n) % 8 == 0
    

Formula

A000010(a(n)) == 0 (mod 8).
Showing 1-9 of 9 results.