cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A135039 Ceiling(Pi*n^2).

Original entry on oeis.org

0, 4, 13, 29, 51, 79, 114, 154, 202, 255, 315, 381, 453, 531, 616, 707, 805, 908, 1018, 1135, 1257, 1386, 1521, 1662, 1810, 1964, 2124, 2291, 2464, 2643, 2828, 3020, 3217, 3422, 3632, 3849, 4072, 4301, 4537, 4779, 5027, 5282, 5542, 5809, 6083, 6362, 6648
Offset: 0

Views

Author

Mohammad K. Azarian, Feb 29 2008

Keywords

Comments

Old name was "a(n)=ceiling[area of a circle of radius n]".

Crossrefs

Cf. A066643.

Programs

  • Mathematica
    Ceiling[Pi Range[50]^2] (* Harvey P. Dale, Oct 10 2011 *)

Extensions

New name (using explicit formula), Joerg Arndt, Feb 19 2013

A004082 Numbers k such that sin(k-1) <= 0 and sin(k) > 0.

Original entry on oeis.org

1, 7, 13, 19, 26, 32, 38, 44, 51, 57, 63, 70, 76, 82, 88, 95, 101, 107, 114, 120, 126, 132, 139, 145, 151, 158, 164, 170, 176, 183, 189, 195, 202, 208, 214, 220, 227, 233, 239, 246, 252, 258, 264, 271, 277, 283, 290, 296
Offset: 1

Views

Author

Keywords

Comments

Apart from the first term this is also the sequence ceiling(circumference of a circle of radius n) = ceiling(2*Pi*n), n >= 1. - Mohammad K. Azarian, Feb 29 2008, Aug 01 2009
Bisection of A004084. - Michel Marcus, Mar 21 2013

Crossrefs

For floor(2*Pi*n) see A038130.
See A277690 for another version.

Programs

  • Mathematica
    Join[{1},Transpose[SequencePosition[Table[If[Sin[n]<=0,1,0],{n,300}],{1,0}]][[2]]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Apr 12 2016 *)
  • PARI
    lista(m) = {for (i=1, m, if ((sin(i-1)<=0) && (sin(i) > 0), print1(i, ", ")););} \\ Michel Marcus, Mar 21 2013

Formula

a(n) = A038130(n-1) + 1.

A135973 Ceiling(4/3*Pi*n^3).

Original entry on oeis.org

0, 5, 34, 114, 269, 524, 905, 1437, 2145, 3054, 4189, 5576, 7239, 9203, 11495, 14138, 17158, 20580, 24430, 28731, 33511, 38793, 44603, 50966, 57906, 65450, 73623, 82448, 91953, 102161, 113098, 124789, 137259, 150533, 164637, 179595, 195433
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 02 2008

Keywords

Comments

Volume of a sphere of radius n, rounded up.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[4/3*Pi * n^3], {n, 0, 60}] (* Vincenzo Librandi, Feb 19 2013 *)
  • PARI
    a(n)=ceil(4/3*Pi*n^3) \\ Charles R Greathouse IV, Oct 10 2013
  • Sage
    n=100 # change n for more values
    [ceil(4/3*pi*r^3) for r in [0..n]] # Tom Edgar, Oct 10 2013
    

Formula

a(n) = A066645(n) + 1 for n > 0.

Extensions

Definition replaced by Vincenzo Librandi, Feb 19 2013
0 prepended by T. D. Noe, Oct 10 2013

A135971 Ceiling(4*Pi*n^2).

Original entry on oeis.org

13, 51, 114, 202, 315, 453, 616, 805, 1018, 1257, 1521, 1810, 2124, 2464, 2828, 3217, 3632, 4072, 4537, 5027, 5542, 6083, 6648, 7239, 7854, 8495, 9161, 9853, 10569, 11310, 12077, 12868, 13685, 14527, 15394, 16287, 17204, 18146, 19114, 20107
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 02 2008

Keywords

Comments

The original definition was "a(n)=ceiling[surface area of a shpere of radius n]".

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[4 Pi n^2], {n, 1, 50}] (* Vincenzo Librandi, Feb 19 2013 *)

Extensions

Definition replaced by Bruno Berselli, Feb 19 2013

A386538 a(n) is the maximum possible area of a polygon within a circle of radius n, where both the center and the vertices lie on points of a unit square grid.

Original entry on oeis.org

0, 2, 8, 24, 42, 74, 104, 138, 186, 240, 304, 362, 424, 512, 594, 690, 776, 880, 986, 1104, 1232, 1346, 1490, 1624, 1762, 1930, 2088, 2256, 2418, 2594, 2784, 2962, 3170, 3368, 3584, 3810, 4008, 4248, 4466, 4730, 4976, 5210, 5474, 5736, 6024, 6306, 6570, 6864, 7154
Offset: 0

Views

Author

Felix Huber, Aug 05 2025

Keywords

Comments

a(n) > 99% of the circle area for n >= 50.
Conjecture: The maximum possible area of a polygon within the circle would be the same if only the vertices but not the center were fixed on grid points.
All terms are even.

Examples

			See linked illustration of the term a(4) = 42.
		

Crossrefs

Programs

  • Maple
    A386538:=proc(n)
        local x,y,p,s;
        p:=4*n;
        s:={};
        for x to n do
            y:=floor(sqrt(n^2-x^2));
            p:=p+4*y;
            s:=s union {y}
        od;
        return p-2*nops(s)
    end proc;
    seq(A386538(n),n=0..48);
  • Mathematica
    a[n_] := Module[{p=4n},s = {}; Do[ y = Floor[Sqrt[n^2 - x^2]];p = p + 4*y;s = Union[s, {y}],{x,n} ];p - 2*Length[s]];Array[a,49,0] (* James C. McMahon, Aug 19 2025 *)

Formula

a(n) = A386539(A000217(n)) = A386539(n,n) for n >= 1.
a(n) <= A066643(n).

A135607 Floor of the area of a circle in terms of its circumference n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 20, 22, 25, 28, 31, 35, 38, 42, 45, 49, 53, 58, 62, 66, 71, 76, 81, 86, 91, 97, 103, 108, 114, 121, 127, 133, 140, 147, 154, 161, 168, 175, 183, 191, 198, 206, 215, 223, 232, 240, 249, 258, 267, 277, 286, 296, 305, 315
Offset: 0

Views

Author

Cino Hilliard, Feb 27 2008

Keywords

Examples

			For a circle of circumference 10, the floor of the area A = floor(100/4/Pi) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^2/(4*Pi)], {n,0,25}] (* G. C. Greubel, Oct 21 2016 *)
  • PARI
    g(n) = for(c=0,n,a=c^2/4/Pi;print1(floor(a)","))
    
  • PARI
    a(n) = n^2\(4*Pi); \\ Michel Marcus, Oct 22 2016

Formula

Area of a circle of radius r is A = Pi*r^2. Circumference of a circle of radius r is n = 2*Pi*r. Then area in terms of the circumference n is A = n^2/(4*Pi).

A210519 a(n) = floor(volume of 4-sphere of radius n).

Original entry on oeis.org

0, 4, 78, 399, 1263, 3084, 6395, 11848, 20212, 32377, 49348, 72250, 102328, 140942, 189575, 249824, 323407, 412159, 518035, 643108, 789568, 959725, 1156007, 1380959, 1637248, 1927657, 2255086, 2622556, 3033205, 3490291
Offset: 0

Views

Author

Jon Perry, Jan 26 2013

Keywords

Comments

The 4-sphere here refers to the geometric sphere, that is, 4 refers to the number of dimensions of the sphere.
The general formula for the volume of an n-sphere can be derived using (4)-(10) at the Mathworld link, and some explicit values for higher dimensional spheres are given at the Wikipedia link, section 2.4. Note that Wikipedia uses the topologic definition and calls this 4-sphere a 3-sphere.

Crossrefs

Programs

  • JavaScript
    pi = Math.PI;
    for (i = 0; i < 60; i++) document.write(Math.floor(pi*pi*i*i*i*i/2) + ", ");
  • Mathematica
    Table[Floor[(Pi^2 n^4)/2], {n, 0, 29}]

Formula

a(n) = floor(1/2*Pi^2*n^4).

A227794 Primes of the form floor(Pi*k^2).

Original entry on oeis.org

3, 113, 907, 3019, 3631, 5281, 6361, 7853, 8171, 11689, 14957, 16741, 17203, 20611, 33329, 36643, 38707, 63347, 68813, 96211, 115811, 126923, 128189, 129461, 169093, 172021, 234139, 241051, 248063, 301907, 319691, 340049, 367453, 380459, 382649, 387047, 448883
Offset: 1

Views

Author

K. D. Bajpai, Sep 23 2013

Keywords

Examples

			a(2)=113: Pi*6^2 = 113.09 and 113 is prime.
a(3)=907: Pi*17^2 = 907.92 and 907 is prime.
		

Crossrefs

Cf. A066643 (floor(Pi*n^2)), A067559 (n that produce primes).

Programs

  • Maple
    select(isprime, {seq(floor(Pi*n^2),n=1..1000)}); [corrected by Georg Fischer, Sep 27 2024]
  • Mathematica
    Select[Floor[Pi*Range[400]^2],PrimeQ] (* Harvey P. Dale, Dec 18 2016 *)
  • PARI
    is(n)=my(r=sqrtint((n+1)\Pi)); Pi*r^2>n && isprime(n) \\ Charles R Greathouse IV, Sep 23 2013

A235361 Floor((n + Pi)^2).

Original entry on oeis.org

9, 17, 26, 37, 51, 66, 83, 102, 124, 147, 172, 199, 229, 260, 293, 329, 366, 405, 446, 490, 535, 582, 632, 683, 736, 791, 849, 908, 969, 1033, 1098, 1165, 1234, 1306, 1379, 1454, 1532, 1611, 1692, 1775, 1861, 1948, 2037, 2129, 2222, 2317, 2414, 2514, 2615
Offset: 0

Views

Author

Alex Ratushnyak, Jan 07 2014

Keywords

Examples

			a(1) = floor((Pi + 1)^2) = floor(17.1527897...) = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + Pi)^2], {n, 0, 49}] (* Alonso del Arte, Jan 07 2014 *)
  • PARI
    a(n) = floor((n+Pi)^2); \\ Michel Marcus, Jan 07 2014

A332084 Triangle read by rows: T(n,k) is the smallest m >= 0 such that floor(Pi*n^m) == k (mod n), -1 if one does not exist, k = 0..n-1.

Original entry on oeis.org

0, 1, 0, 0, 2, 4, 1, 3, 2, 0, 1, 7, 3, 0, 8, 1, 9, 14, 0, 10, 2, 1, 7, 10, 0, 8, 6, 2, 3, 1, 8, 0, 9, 6, 14, 5, 10, 1, 2, 0, 3, 20, 18, 11, 5, 32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 5, 1, 8, 0, 13, 4, 2, 6, 9, 24, 12, 5, 1, 22, 0, 3, 17, 14, 18, 2, 6, 20, 10, 5, 1, 10, 0, 6, 9, 17, 14, 23, 7, 2, 21, 3
Offset: 1

Views

Author

Davis Smith, Aug 22 2020

Keywords

Comments

Pi is normal in base n >= 2 if and only if in every row N, such that N is a power of n, -1 does not appear. Pi is absolutely normal if and only if -1 never appears.
Conjecture: Pi is absolutely normal, meaning that -1 will never appear.
This triangle is an instance of the more general f(n,k,r), where f(n,k,r) is the smallest m >= 0 such that floor(r*n^m) == k (mod n) (-1 if one does not exist) and r is irrational. The same conditions for normalcy apply.

Examples

			The triangle T(n,k) starts:
n\k   0   1   2   3   4   5   6   7   8   9  10  11  12 ...
1:    0
2:    1   0
3:    0   2   4
4:    1   3   2   0
5:    1   7   3   0   8
6:    1   9  14   0  10   2
7:    1   7  10   0   8   6   2
8:    3   1   8   0   9   6  14   5
9:   10   1   2   0   3  20  18  11   5
10:  32   1   6   0   2   4   7  13  11   5
11:   5   1  22   0  13   4   2   6   9  24  12
12:   5   1  10   0   3  17  14  18   2   6  20  10
13:   5   1  10   0   6   9  17  14  23   7   2  21   3
		

Crossrefs

Positions of 0 through 9 in base 10: A037000, A037001, A037002, A037003, A037004, A037005, A036974, A037006, A037007, A037008.

Programs

  • PARI
    A332084_row(n)={my(L=List(vector(n,z,-1)), m=-1); while(vecmin(Vec(L))==-1, my(Z=lift(Mod(floor(Pi*n^(m++)),n))+1); if(L[Z]<0,listput(L,m,Z))); Vec(L)}

Formula

T(n,3) = 0, n > 3.
Showing 1-10 of 12 results. Next