cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A127103 Numbers k such that k^2 divides 3^k-1.

Original entry on oeis.org

1, 2, 4, 20, 220, 1220, 2420, 5060, 13420, 14740, 23620, 55660, 145420, 147620, 162140, 237820, 259820, 290620, 308660, 339020, 447740, 847220, 899140, 1210220, 1440820, 1599620, 1759340, 2332660, 2616020, 2858020, 3196820, 3344660
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

From Alexander Adamchuk, Jan 11 2007: (Start)
2 divides a(n) for n>1. 2^2 divides a(n) for n>2. 5 divides a(n) for n>3.
11 divides a(n) for n = {5,7,8,9,10,12,13,14,15,16,17,18,19,20,22,23,24,26,27, 28,29,30,31,31,33,34,35,...}.
11^2 divides a(n) for n = {7,12,14,15,26,27,29,30,31,33,34,...}.
Prime factors of a(n) in order of their appearance in a(n) are {2,5,11,61,23,67,1181,661,47,1321,367,3851,5501,727,461,269,...}. (End)

Crossrefs

Subset of A067945 (numbers k that divide 3^k - 1).

Programs

  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[3, #, #^2 ]-1)/#^2 ]&]
    Join[{1},Select[Range[335*10^4],PowerMod[3,#,#^2]==1&]] (* Harvey P. Dale, Oct 02 2019 *)
  • PARI
    is(k) = Mod(3, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007

A015973 Positive integers n such that n | (3^n + 2).

Original entry on oeis.org

1, 5, 77, 278377, 3697489, 219596687717, 56865169816619
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^15. Some larger term: 3142423971953435020522506484187. - Max Alekseyev, Aug 04 2011

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), this sequence (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Extensions

a(1)=1 prepended and a(6)-a(7) added by Max Alekseyev, Aug 04 2011

A129211 Numbers k such that k^3 divides 3^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 10, 20, 68, 110, 164, 220, 340, 610, 772, 820, 1010, 1210, 1220, 1510, 2020, 2420, 2530, 2788, 3020, 3740, 3860, 5060, 6710, 7004, 7370, 8020, 9020, 9316, 11110, 11810, 13124, 13420, 13612, 13940, 14740, 16610, 19580, 20740, 20876, 22220
Offset: 1

Views

Author

Alexander Adamchuk, Apr 03 2007

Keywords

Crossrefs

Cf. A067945 (numbers k such that k divides 3^k-1).
Cf. A127103 (numbers k such that k^2 divides 3^k-1).

Programs

  • Mathematica
    k=1; Do[ p=Prime[k]; If[ IntegerQ[ (PowerMod[ p+1, n^2, n^3 ] - 1 )/n^3 ], Print[ {k, p, n} ]], {n,1,100000} ]
    Join[{1}, Select[Range[3000000], PowerMod[3, #^2, #^3] == 1 &]] (* Robert Price, Mar 31 2020 *)

A128360 Numbers k such that k divides 20^k - 1.

Original entry on oeis.org

1, 19, 361, 6859, 130321, 2476099, 47045881, 148305659, 893871739, 2817807521, 4234136149, 10350100679, 16983563041, 53538342899, 80448586831, 196651912901, 322687697779, 815211156289, 1017228515081, 1432001198261, 1528523149789
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007

Keywords

Comments

19 divides a(n) for n > 1. All powers of 19 are terms. a(n) = 19^(n-1) for all to n < 8, while a(8) = A128356(8) = 148305659 = 410819*19^2.
Prime divisors of a(n) in the order of appearance are {19, 410819, 617311, 1508981, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

Extensions

a(9)-a(11) from Stefan Steinerberger, May 09 2007
a(12)-a(15) from Alexander Adamchuk, May 16 2010
Edited and a(16)-a(21) added by Max Alekseyev, Oct 02 2010

A276671 Positive integers k such that 3^k == 2 (mod k).

Original entry on oeis.org

1, 2929, 9742277641, 23341869101, 15092205901438895, 16311037042239935
Offset: 1

Views

Author

Max Alekseyev, Oct 05 2016

Keywords

Comments

No other terms below 2*10^16. A larger term: 31744873758348589012852097851.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[10000], PowerMod[3, #, #] == 2 &]] (* Alonso del Arte, Oct 11 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(2, n); \\ Dmitry Ezhov, Sep 28 2016

Extensions

Order of terms corrected by Felix Fröhlich, Oct 06 2016
a(5)-a(6) from Sergey Paramonov, Oct 03 2021

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A014956 Positive integers k such that k divides 14^k - 1.

Original entry on oeis.org

1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k such that k divides A014929(k).
13 divides a(n) for n > 1. All powers of 13 are terms. All a(n) that are not powers of 13 are divisible either by 157 or 677 or both. - Alexander Adamchuk, May 14 2010
Prime divisors of a(n) in order of appearance: {13, 157, 677, 11933, 122147, 52807, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)

Extensions

2 more terms from R. J. Mathar, Mar 05 2008
a(8)-a(23) from Alexander Adamchuk, May 14 2010
a(24)-a(44) from Alexander Adamchuk, May 16 2010
Edited by Max Alekseyev, Sep 10 2011

A014957 Positive integers k that divide 16^k - 1.

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k that divide A014931(k).

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
  • Python
    A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021

Extensions

Edited by Max Alekseyev, Sep 10 2011

A074792 Least k > 1 such that k^n == 1 (mod n).

Original entry on oeis.org

2, 3, 4, 3, 6, 5, 8, 3, 4, 9, 12, 5, 14, 13, 16, 3, 18, 5, 20, 3, 4, 21, 24, 5, 6, 25, 4, 13, 30, 11, 32, 3, 34, 33, 36, 5, 38, 37, 16, 3, 42, 5, 44, 21, 16, 45, 48, 5, 8, 9, 52, 5, 54, 5, 16, 13, 7, 57, 60, 7, 62, 61, 4, 3, 66, 23, 68, 13, 70, 29, 72, 5, 74, 73, 16, 37, 78, 17, 80, 3
Offset: 1

Views

Author

Benoit Cloitre, Sep 07 2002

Keywords

Crossrefs

a(n) = {A076944(n)}^(1/n).

Programs

  • Mathematica
    Do[k = 2; While[ !IntegerQ[(k^n - 1)/n], k++ ]; Print[k], {n, 1, 80}] (* Robert G. Wilson v *)
  • PARI
    a(n)=if(n<0,0,s=2; while((s^n-1)%n>0,s++); s)
    
  • PARI
    a(n)=my(s=2); while(Mod(s,n)^n-1!=0, s++); return(s) \\ Rémy Sigrist, Apr 02 2017

Formula

If p is prime a(p)=p+1 and a(2p)=2p-1; if n is in A050384 a(n)=n+1; if n is in A067945 a(n)=3 etc. It seems that sum(k=1, n, a(k)) is asymptotic to c*n^2 with c=0.2...

A128356 Least number k > 1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n).

Original entry on oeis.org

20, 21, 1555, 889, 253, 2041, 5846759, 148305659, 1081, 279241, 9641, 950123, 33661, 63213709997, 583223, 3775349, 72707647, 149070763, 196932497, 5091481, 25760459, 14307947980741, 13861, 9362711, 376457, 132766545553, 63757
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007

Keywords

Comments

All listed terms have 2 distinct prime divisors. Most listed terms are semiprimes, except a(7) = 20231*17^2 and a(8) = 410819*19^2. p = prime(n) divides a(n). Quotients a(n)/prime(n) are listed in A128357 = {10, 7, 311, 127, 23, 157, 343927, ...}. a(15) = 583223 = 47*12409. a(16) = 3775349 = 53*71233.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms *) a[n_] := For[p = Prime[n]; k = 2, True, k++, If[Length[FactorInteger[k]] == 2, If[Mod[PowerMod[p + 1, k, k] - 1, k] == 0, Print[k]; Return[k]]]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Oct 07 2013 *)

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010
Showing 1-10 of 27 results. Next