A103345
Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).
Original entry on oeis.org
1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1
The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
A099828
Numerator of the generalized harmonic number H(n,5) = Sum_{k=1..n} 1/k^5.
Original entry on oeis.org
1, 33, 8051, 257875, 806108207, 268736069, 4516906311683, 144545256245731, 105375212839937899, 105376229094957931, 16971048697474072945481, 16971114472329088045481, 6301272372663207205033976933
Offset: 1
H(n,5) = {1, 33/32, 8051/7776, 257875/248832, ... } = A099828/A069052.
For example, a(2) = numerator(1 + 1/2^5) = numerator(33/32) = 33 and a(3) = numerator(1 + 1/2^5 + 1/3^5) = numerator(8051/7776) = 8051. [Edited by _Petros Hadjicostas_, May 10 2020]
A099827 = H(n,5) multiplied by (n!)^5.
-
Numerator[Table[Sum[1/k^5, {k, 1, n}], {n, 1, 20}]]
Numerator[Table[HarmonicNumber[n, 5], {n, 1, 20}]]
Table[Numerator[Sum[1/k^5,{k,1,n}]],{n,1,100}] (* Alexander Adamchuk, Nov 07 2006 *)
-
a(n) = numerator(sum(k=1, n, 1/k^5)); \\ Michel Marcus, May 10 2020
A099827
Generalized harmonic number H(n,5) = Sum_{k=1..n} 1/k^5 multiplied by (n!)^5.
Original entry on oeis.org
0, 1, 33, 8051, 8252000, 25795462624, 200610400564224, 3371852494046112768, 110492114540967125581824, 6524555433591956305924325376, 652461835742417609568446054400000, 105080260346474296336209157187174400000
Offset: 0
a(2) = (2!)^5 * (1 + 1/2^5) = 2^5 + 1 = 33,
a(3) = (3!)^5 * (1 + 1/2^5 + 1/3^5) = 6^5 + 3^5 + 1 = 8051.
-
Table[(n!)^5*Sum[1/k^5, {k, 1, n}], {n, 0, 13}] or Table[(n!)^5*HarmonicNumber[n, 5], {n, 0, 13}]
A103347
Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).
Original entry on oeis.org
1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1
-
f:= n -> numer(Psi(6,n+1)/720 + Zeta(7)):
map(f, [$1..20]); # Robert Israel, Mar 28 2018
-
s=0;lst={};Do[s+=n^1/n^8;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 7] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 04 2013 *)
A103349
Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).
Original entry on oeis.org
1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1
-
s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Accumulate[1/Range[10]^8]//Numerator (* Harvey P. Dale, Aug 11 2024 *)
A103351
Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).
Original entry on oeis.org
1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1
A103716
Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
Original entry on oeis.org
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1
A322266
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
2, 3/2, 5/4, 9/8, 17/16, ...
3, 11/6, 49/36, 251/216, 1393/1296, ...
4, 25/12, 205/144, 2035/1728, 22369/20736, ...
5, 137/60, 5269/3600, 256103/216000, 14001361/12960000, ...
Columns k=0..10 give
A000012,
A002805,
A007407,
A007409,
A007480,
A069052,
A103346,
A103348,
A103350,
A103352,
A103717.
-
Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Showing 1-8 of 8 results.
Comments