cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A024770 Right-truncatable primes: every prefix is prime.

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 5939, 7193, 7331, 7333, 7393, 23333, 23339, 23399, 23993, 29399, 31193
Offset: 1

Views

Author

Keywords

Comments

Primes in which repeatedly deleting the least significant digit gives a prime at every step until a single-digit prime remains. The sequence ends at a(83) = 73939133 = A023107(10).
The subsequence which consists of the following "chain" of consecutive right truncatable primes: 73939133, 7393913, 739391, 73939, 7393, 739, 73, 7 yields the largest sum, compared with other chains formed from subsets of this sequence: 73939133 + 7393913 + 739391 + 73939 + 7393 + 739 + 73 + 7 = 82154588. - Alexander R. Povolotsky, Jan 22 2008
Can also be seen as a table whose n-th row lists the n-digit terms; row lengths (0 for n >= 9) are given by A050986. The sequence can be constructed starting with the single-digit primes and appending, for each p in the list, the primes within 10*p and 10(p+1), formed by appending a digit to p. - M. F. Hasler, Nov 07 2018

References

  • Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer London 2010, pp. 86-89.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 112-113.

Crossrefs

Supersequence of A085823, A202263. Subsequence of A012883, A068669. - Jaroslav Krizek, Jan 28 2012
Supersequence of A239747.
Cf. A033664, A024785 (left-truncatable primes), A032437, A020994, A052023, A052024, A052025, A050986, A050987, A069866, A077390 (left-and-right-truncatable primes), A137812 (left-or-right truncatable primes), A254751, A254753.
Cf. A237600 for the base-16 analog.

Programs

  • Haskell
    import Data.List (inits)
    a024770 n = a024770_list !! (n-1)
    a024770_list = filter (\x ->
       all (== 1) $ map (a010051 . read) $ tail $ inits $ show x) a038618_list
    -- Reinhard Zumkeller, Nov 01 2011
    
  • Maple
    s:=[1,3,7,9]: a:=[[2],[3],[5],[7]]: l1:=1: l2:=4: do for j from l1 to l2 do for k from 1 to 4 do d:=[s[k],op(a[j])]: if(isprime(op(convert(d, base, 10, 10^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: seq(op(convert(a[j], base, 10, 10^nops(a[j]))),j=1..nops(a)); # Nathaniel Johnston, Jun 21 2011
  • Mathematica
    max = 100000; truncate[p_] := If[PrimeQ[q = Quotient[p, 10]], q, p]; ok[p_] := FixedPoint[ truncate, p] < 10; p = 1; A024770 = {}; While[ (p = NextPrime[p]) < max, If[ok[p], AppendTo[ A024770, p]]]; A024770 (* Jean-François Alcover, Nov 09 2011, after Pari *)
    eppQ[n_]:=AllTrue[FromDigits/@Table[Take[IntegerDigits[n],i],{i, IntegerLength[ n]-1}], PrimeQ]; Select[Prime[Range[3400]],eppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    {fileO="b024770.txt";v=vector(100);v[1]=2;v[2]=3;v[3]=5;v[4]=7;j=4;j1=1; write(fileO,"1 2");write(fileO,"2 3");write(fileO,"3 5");write(fileO,"4 7"); until(0,if(j1>j,break);new=1;for(i=j1,j,if(new,j1=j+1;new=0);for(k=1,9, z=10*v[i]+k;if(isprime(z),j++;v[j]=z;write(fileO,j," ",z);))));} \\ Harry J. Smith, Sep 20 2008
    
  • PARI
    for(n=2, 31193, v=n; while(isprime(n), c=n; n=(c-lift(Mod(c, 10)))/10); if(n==0, print1(v, ", ")); n=v); \\ Arkadiusz Wesolowski, Mar 20 2014
    
  • PARI
    A024770=vector(9, n, p=concat(apply(t->primes([t, t+1]*10), if(n>1, p)))) \\ The list of n-digit terms, 1 <= n <= 9. Use concat(%) to "flatten" it. - M. F. Hasler, Nov 07 2018
    
  • Python
    from sympy import primerange
    p = lambda x: list(primerange(x, x+10)); A024770 = p(0); i=0
    while iA024770): A024770+=p(A024770[i]*10); i+=1 # M. F. Hasler, Mar 11 2020

A033664 Every suffix is prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 503, 523, 547, 607, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 907, 937, 947
Offset: 1

Views

Author

Keywords

Comments

Primes in which repeatedly deleting the most significant digit gives a prime at every step until a single-digit prime remains.
Every digit string containing the least significant digit is prime. - Amarnath Murthy, Sep 24 2003

Crossrefs

Programs

  • Haskell
    a033664 n = a033664_list !! (n-1)
    a033664_list = filter (all ((== 1) . a010051. read) .
                               init . tail . tails . show) a000040_list
    -- Reinhard Zumkeller, Jul 10 2013
    
  • Maple
    T:= proc(n) option remember; `if`(n=0, "", select(isprime, [seq(seq(
          seq(parse(cat(j, 0$(n-i), p)), p=[T(i-1)]), i=1..n), j=1..9)])[])
        end:
    seq(T(n), n=1..4);  # Alois P. Heinz, Sep 01 2021
  • Mathematica
    h8pQ[n_]:=And@@PrimeQ/@Most[NestWhileList[FromDigits[Rest[ IntegerDigits[ #]]]&, n,#>0&]]; Select[Prime[Range[1000]],h8pQ] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    fileO="b033664.txt";lim=8779;v=vector(lim);v[1]=2;v[2]=3;v[3]=5;v[4]=7;j=4; write(fileO,"1 2");write(fileO,"2 3");write(fileO,"3 5");write(fileO,"4 7"); p10=1;until(0,p10*=10;j0=j;for(k=1,9,k10=k*p10; for(i=1,j0,if(j==lim,break(3));z=k10+v[i]; if(isprime(z),j++;v[j]=z;write(fileO,j," ",z);)))) \\ Harry J. Smith, Sep 20 2008
    
  • Python
    from sympy import isprime, primerange
    def ok(p): # does prime p satisfy the property
        s = str(p)
        return all(isprime(int(s[i:])) for i in range(1, len(s)))
    print(list(filter(ok, primerange(1, 1000)))) # Michael S. Branicky, Sep 01 2021
    
  • Python
    # alternate for going to large numbers
    def agen(maxdigits):
        yield from [2, 3, 5, 7]
        primestrs, digits, d = ["2", "3", "5", "7"], "0123456789", 1
        while len(primestrs) > 0 and d < maxdigits:
            cands = set(d+p for p in primestrs for d in "0123456789")
            primestrs = [c for c in cands if c[0] == "0" or isprime(int(c))]
            yield from sorted(map(int, (p for p in primestrs if p[0] != "0")))
            d += 1
    print([p for p in agen(11)]) # Michael S. Branicky, Sep 01 2021

Extensions

More terms from Erich Friedman

A069867 Primes in which repeatedly deleting the least significant digit then the most significant digit gives a prime at every step until a single-digit prime remains.

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 131, 137, 139, 173, 179, 233, 239, 373, 379, 431, 433, 439, 479, 673, 677, 733, 739, 839, 971, 977, 1319, 1373, 1733, 2237, 2239, 2293, 2297, 2711, 2713, 2719, 3313, 3319, 3371, 3373, 3533, 3539, 3593, 3733
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 512, AllTrue[FromDigits /@ Rest@ Fold[Append[#1, Delete[Last[#1], 1 - 2 Boole[OddQ@ #2]]] &, {#}, Range[Length@ # - 1]] &@ IntegerDigits[#], PrimeQ] &] (* Michael De Vlieger, Jan 20 2018 *)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Sep 24 2002

A173057 Partial sums of A024770.

Original entry on oeis.org

2, 5, 10, 17, 40, 69, 100, 137, 190, 249, 320, 393, 472, 705, 944, 1237, 1548, 1861, 2178, 2551, 2930, 3523, 4122, 4841, 5574, 6313, 7110, 9443, 11782, 14175, 16574, 19513, 22632, 25769, 29502, 33241, 37034, 40831, 46770, 53963, 61294, 68627
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of right-truncatable primes, primes whose every prefix is prime (in decimal representation). The sequence has 83 terms. The subsequence of prime partial sums of right-truncatable primes begins: 2, 5, 17, 137, 1237, 1861, 2551, 199483. What is the largest value in the subsubsequence of right-truncatable prime partial sums of right-truncatable primes?

Examples

			a(50) = 2 + 3 + 5 + 7 + 23 + 29 + 31 + 37 + 53 + 59 + 71 + 73 + 79 + 233 + 239 + 293 + 311 + 313 + 317 + 373 + 379 + 593 + 599 + 719 + 733 + 739 + 797 + 2333 + 2339 + 2393 + 2399 + 2939 + 3119 + 3137 + 3733 + 3739 + 3793 + 3797 + 5939 + 7193 + 7331 + 7333 + 7393 + 23333 + 23339 + 23399 + 23993 + 29399 + 31193 + 31379.
		

Crossrefs

Showing 1-4 of 4 results.