cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A255171 First differences of A072473.

Original entry on oeis.org

3, 4, 4, 6, 6, 2, 8, 4, 4, 6, 4, 8, 4, 2, 12, 2, 10, 6, 6, 6, 6, 2, 18, -2, 6, 10, 8, 6, 6, -2, 14, 0, 18, 2, 8, 8, 4, 10, 6, 6, 10, 0, 12, 2, 14, 0, 0, 14, 18, 12, 6, 6, 6, 2, 6, 0, 20, 0, 8
Offset: 1

Views

Author

Zak Seidov, Feb 15 2015

Keywords

Crossrefs

Formula

a(n) = A072473(n+1) - A072473(n).

A255172 Integers k such that A072473(k) = A072473(k+1) = A072473(k+2) = A072473(k+3).

Original entry on oeis.org

126, 15190, 15924, 17180, 23047, 24410, 33553, 44049, 51019, 54358, 74240, 77460, 102494, 103168, 128522, 154518, 156386, 186056, 232346, 244086, 250216, 285095, 291306, 320942, 447634, 465803, 477517, 478415, 508078, 518164, 518861, 526764, 587712, 589208
Offset: 1

Views

Author

Zak Seidov, Feb 15 2015

Keywords

Comments

Corresponding values of A072473(k): 900, 188790, 199218, 216630, 297504, 316572, 446890, 599998, 702990, 752700, 1052898, 1101480, 1488444, 1498860.

Crossrefs

Programs

  • PARI
    { my(p=0, q=0, k=0, r=0); for(n=1, 1e6, p=nextprime(1+p); q=nextprime(1+nextprime(1+q)); my(t=q-p); if(t<>r, r=t; k=0); k++; if(k>=4, print1(n+1-k, ", "))) } \\ Andrew Howroyd, Nov 11 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, Nov 11 2018

A114042 Numbers n such that A072473(n)=A072473(n+1).

Original entry on oeis.org

32, 42, 46, 47, 56, 58, 61, 66, 71, 74, 76, 97, 103, 114, 118, 126, 127, 128, 161, 177, 180, 186, 195, 205, 232, 233, 267, 271, 290, 321, 326, 329, 331, 347, 359, 368, 370, 372, 383, 416, 423, 432, 437, 456, 508, 518, 520, 593, 594, 607, 633, 666, 675, 709
Offset: 1

Views

Author

Zak Seidov, Feb 01 2006

Keywords

Comments

A072473: a(n) = p(2n) - p(n), where p(k) is the k-th prime.
Usually A072473(n) < A072473(n+1), only rarely this is not the case. Cf. A072473 a(n)=p(2n)-p(n), where p(k) is the k-th prime, A115867 numbers n such that A072473(n)=A072473(n+1).

Crossrefs

Programs

  • Mathematica
    s={};Do[If[Prime[2n]-Prime[n]==Prime[2(n+1)]-Prime[n+1],AppendTo[s,n]],{n,1000}];s
    SequencePosition[Table[Prime[2n]-Prime[n],{n,800}],{x_,x_}][[;;,1]] (* Harvey P. Dale, Jun 19 2024 *)

Extensions

Entry revised by Robert G. Wilson v, Mar 16 2006

A066066 a(n) = prime(2*n) - 2*prime(n).

Original entry on oeis.org

-1, 1, 3, 5, 7, 11, 9, 15, 15, 13, 17, 15, 19, 21, 19, 25, 21, 29, 29, 31, 35, 35, 33, 45, 35, 37, 45, 49, 53, 55, 39, 49, 43, 59, 51, 57, 59, 57, 63, 63, 63, 71, 61, 71, 69, 81, 69, 57, 67, 83, 91, 91, 95, 91, 87, 87, 81, 99, 93, 97, 107, 97, 87, 97, 107, 109, 95, 95, 93, 111, 115, 109, 105, 111, 105, 115, 109, 117, 127, 123, 115
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 01 2001

Keywords

Comments

a(n) = A022457(n) for n > 1.
a(n) = A031215(n)-A100484(n) = A072473(n)-A000040(n); see A179740 for primes. - Reinhard Zumkeller, Jul 25 2010
Asymptotically, a(n) ~ log(4) n, with log(4) = 2 log 2 = 1.38629436111989... = A016627. - M. F. Hasler, Oct 19 2013

Programs

  • Mathematica
    Table[Prime[2n]-2Prime[n],{n,100}] (* Harvey P. Dale, Aug 21 2016 *)
  • PARI
    { for (n = 1, 1000, a=prime(2*n) - prime(n)*2; write("b066066.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 09 2009
    
  • PARI
    A066066(n)=prime(2*n)-2*prime(n) \\ M. F. Hasler, Oct 19 2013

A072715 Record differences between n-th prime and 2n-th prime.

Original entry on oeis.org

1, 4, 8, 12, 18, 24, 26, 34, 38, 42, 48, 52, 60, 64, 66, 78, 80, 90, 96, 102, 108, 114, 116, 134, 138, 148, 156, 162, 168, 180, 198, 200, 208, 216, 220, 230, 236, 242, 252, 264, 266, 280, 294, 312, 324, 330, 336, 342, 344, 350, 370, 378, 390, 394, 408, 420, 426
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Crossrefs

RECORDS transform of A072473.

A213926 prime(n^2) - prime(n).

Original entry on oeis.org

0, 4, 18, 46, 86, 138, 210, 292, 396, 512, 630, 790, 968, 1150, 1380, 1566, 1820, 2082, 2370, 2670, 3010, 3382, 3720, 4122, 4540, 4950, 5416, 5900, 6372, 6884, 7446, 8030, 8600, 9202, 9782, 10476, 11164, 11886, 12576, 13326, 14148, 14920, 15686, 16554, 17412
Offset: 1

Views

Author

Vincenzo Librandi, Mar 06 2013

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n^2)-NthPrime(n): n in [1..40]];
    
  • Maple
    A213926 := proc(n) ithprime(n^2)-ithprime(n) ; end proc: seq(A213926(n), n=1..40) ;
  • Mathematica
    Table[Prime[n^2] - Prime[n], {n, 40}]
  • PARI
    a(n)=prime(n^2)-prime(n) \\ Charles R Greathouse IV, Mar 21 2014

Formula

a(n) = A000040(n^2) - A000040(n).

A258934 Half the difference between the 2n-th prime and the n-th prime, starting from n=2.

Original entry on oeis.org

2, 4, 6, 9, 12, 13, 17, 19, 21, 24, 26, 30, 32, 33, 39, 40, 45, 48, 51, 54, 57, 58, 67, 66, 69, 74, 78, 81, 84, 83, 90, 90, 99, 100, 104, 108, 110, 115, 118, 121, 126, 126, 132, 133, 140, 140, 140, 147, 156, 162, 165, 168, 171, 172, 175, 175, 185, 185, 189
Offset: 2

Views

Author

Federico Provvedi, Jun 15 2015

Keywords

Comments

The differences between odd prime numbers are always even, so a(n) is well defined for n>=2.

Crossrefs

Programs

  • Magma
    [(NthPrime(2*n)-NthPrime(n))/2: n in [2..60]]; // Bruno Berselli, Jun 15 2015
  • Mathematica
    Table[(Prime[2 k] - Prime[k])/2, {k, 2, 60}]
  • Sage
    [(nth_prime(2*n)-nth_prime(n))/2 for n in (2..60)] # Bruno Berselli, Jun 15 2015
    

Formula

a(n) = ( prime(2*n) - prime(n) ) / 2.
a(n) = A072473(n)/2.

A141657 a(n) = (prime(2*m)-prime(m))/6 where m is the n-th positive integer such that (prime(2*m)-prime(m))/6 is prime.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 19, 23, 71, 71, 83, 83, 89, 101, 103, 127, 163, 167, 191, 193, 199, 239, 239, 251, 263, 277, 307, 307, 307, 317, 331, 337, 389, 443, 463, 487, 509, 509, 557, 659, 691, 787, 797, 863, 881, 883, 887, 887, 953, 971, 977, 991, 1019, 1063, 1069
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 18 2008

Keywords

Examples

			For m=4,  (p(2*4)  - p(4))/6  =  (19 -  7)/6 =  2 = a(1).
For m=5,  (p(2*5)  - p(5))/6  =  (29 - 11)/6 =  3 = a(2).
For m=10, (p(2*10) - p(10))/6 =  (71 - 29)/6 =  7 = a(3).
For m=15, (p(2*15) - p(15))/6 = (113 - 47)/6 = 11 = a(4).
For m=16, (p(2*16) - p(16))/6 = (131 - 53)/6 = 13 = a(5), etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[(Prime[2n]-Prime[n])/6,{n,1000}],PrimeQ[#]&] (* Harvey P. Dale, Jun 18 2023 *)

Extensions

19, 23 inserted, one instance of 331 removed, 577 removed and extended by R. J. Mathar, Oct 04 2008
Definition clarified by Harvey P. Dale, Jun 18 2023
Definition clarified by David A. Corneth, Jun 18 2023

A142338 Nonprimes of the form (p(2*n)-p(n))/4, where p(n)=n-th prime.

Original entry on oeis.org

1, 6, 12, 15, 16, 20, 24, 27, 33, 39, 42, 45, 45, 50, 52, 54, 55, 63, 63, 66, 70, 70, 70, 78, 81, 84, 86, 102, 105, 108, 110, 115, 117, 117, 118, 121, 121, 132, 133, 138, 141, 146, 148, 150, 156, 158, 165, 168, 168, 171, 180, 180, 182, 198, 203, 205, 205, 210, 210
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 18 2008

Keywords

Comments

Terms are in order of n. The sequence has repetitions and is not monotonic: e.g. a(71) = 249 and a(72) = 248. - Robert Israel, Nov 09 2020

Examples

			If n=2, then (p(2*2)-p(2))/4=(7-3)/4=1=a(1).
If n=6, then (p(2*6)-p(6))/4=(37-13)/4=6=a(2).
If n=11, then (p(2*11)-p(11))/4=(79-31)/4=12=a(3).
If n=13, then (p(2*13)-p(13))/4=(101-41)/4=15=a(4).
If n=14, then (p(2*14)-p(14))/4=(107-43)/4=16=a(5), etc.
		

Crossrefs

Programs

  • Maple
    q:= 1: p:= 1: count:= 0: R:= NULL:
    while count < 100 do
      q:= nextprime(q); p:= nextprime(nextprime(p));
      v:= (p-q)/4;
      if v::integer and not isprime(v) then count:= count+1; R:= R, v fi
    od:
    R; # Robert Israel, Nov 09 2020

Extensions

59 and 87 removed by R. J. Mathar, Oct 04 2008

A255174 a(n) = prime(3*n) - prime(2*n).

Original entry on oeis.org

2, 6, 10, 18, 18, 24, 30, 36, 42, 42, 58, 62, 66, 74, 84, 92, 94, 100, 106, 108, 126, 124, 148, 136, 150, 158, 168, 170, 178, 182, 194, 192, 206, 220, 222, 234, 234, 236, 246, 250, 256, 268, 284, 286, 298, 308, 320, 324, 332, 322, 326, 342, 360, 360, 376, 384
Offset: 1

Views

Author

Zak Seidov, Feb 15 2015

Keywords

Comments

The sequence is not monotonic since, for instance, a(22) = 124 < 126 = a(21).

Crossrefs

Cf. A072473.

Programs

  • Magma
    [NthPrime(3*n) - NthPrime(2*n): n in [1..80]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    Table[Prime[3n]-Prime[2n], {n,100}]

Extensions

More terms from Vincenzo Librandi, Feb 16 2015
Showing 1-10 of 15 results. Next