cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A006040 a(n) = Sum_{i=0..n} (n!/(n-i)!)^2.

Original entry on oeis.org

1, 2, 9, 82, 1313, 32826, 1181737, 57905114, 3705927297, 300180111058, 30018011105801, 3632179343801922, 523033825507476769, 88392716510763573962, 17324972436109660496553, 3898118798124673611724426, 997918412319916444601453057, 288398421160455852489819933474
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of array A099597.
Cf. A073701.

Programs

  • Maple
    a[0]:= 1:
    for n from 1 to 30 do a[n]:= n^2*a[n-1] + 1 od:
    seq(a[i],i=0..30); # Robert Israel, Dec 15 2014
  • Mathematica
    a = 1; lst = {a}; Do[a = a * n^2 + 1; AppendTo[lst, a], {n, 1, 14}]; lst (* Zerinvary Lajos, Jul 08 2009 *)
    Table[Sum[(n!/(n - k)!)^2, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 15 2017 *)
  • PARI
    a(n)=sum(k=0, n, (k!*binomial(n, k))^2 ); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    def A006040_list(len):
        L = [1]
        for k in range(1,len): L.append(L[-1]*k^2+1)
        return L
    A006040_list(18) # Peter Luschny, Dec 15 2014

Formula

a(n) = n^2*a(n-1) + 1.
The following formulas will need adjusting, since I have changed the offset. - N. J. A. Sloane, Dec 17 2013
a(n+1) = Nearest integer to BesselI(0, 2)*n!*n!, n >= 1.
a(n+1) = n!^2*Sum_{k = 0..n} 1/k!^2. BesselI(0, 2*sqrt(x))/(1-x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Vladeta Jovovic, Aug 30 2002
Recurrence: a(1) = 1, a(2) = 2, a(n+1) = (n^2 + 1)*a(n) - (n - 1)^2*a(n-1), n >= 2. The sequence defined by b(n) := (n-1)!^2 satisfies the same recurrence with the initial conditions b(1) = 1, b(2) = 1. It follows that a(n+1) = n!^2*(1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1))))). Hence BesselI(0,2) := Sum_{k >= 0} 1/k!^2 = 1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1 - ...)))). Cf. A073701. - Peter Bala, Jul 09 2008

Extensions

Offset changed by N. J. A. Sloane, Dec 17 2013

A091681 Decimal expansion of BesselJ(0,2).

Original entry on oeis.org

2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 28 2004

Keywords

Comments

The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006

Examples

			0.223890779...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A337152 a(n) = 2^n * (n!)^2 * Sum_{k=0..n} 1 / ((-2)^k * (k!)^2).

Original entry on oeis.org

1, 1, 9, 161, 5153, 257649, 18550729, 1817971441, 232700344449, 37697455800737, 7539491160147401, 1824556860755671041, 525472375897633259809, 177609663053400041815441, 69622987916932816391652873, 31330344562619767376243792849, 16041136416061320896636821938689
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n n!^2 Sum[1/((-2)^k k!^2), {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 2^n * (n!)^2 * sum(k=0, n, 1 / ((-2)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 2*x).
a(0) = 1; a(n) = 2 * n^2 * a(n-1) + (-1)^n.

A337153 a(n) = 3^n * (n!)^2 * Sum_{k=0..n} 1 / ((-3)^k * (k!)^2).

Original entry on oeis.org

1, 2, 25, 674, 32353, 2426474, 262059193, 38522701370, 7396358663041, 1797315155118962, 539194546535688601, 195727620392454962162, 84554332009540543653985, 42869046328837055632570394, 25206999241356188711951391673, 17014724487915427380567189379274, 13067308406719048228275601443282433
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3^n n!^2 Sum[1/((-3)^k k!^2), {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 3 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 3^n * (n!)^2 * sum(k=0, n, 1 / ((-3)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 3*x).
a(0) = 1; a(n) = 3 * n^2 * a(n-1) + (-1)^n.

A337154 a(n) = 4^n * (n!)^2 * Sum_{k=0..n} 1 / ((-4)^k * (k!)^2).

Original entry on oeis.org

1, 3, 49, 1763, 112833, 11283299, 1624795057, 318459831171, 81525716779777, 26414332236647747, 10565732894659098801, 5113814721015003819683, 2945557279304642200137409, 1991196720809938127292888483, 1561098229114991491797624570673, 1404988406203492342617862113605699
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^n n!^2 Sum[1/((-4)^k k!^2), {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 4^n * (n!)^2 * sum(k=0, n, 1 / ((-4)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + (-1)^n.

A337155 a(n) = 5^n * (n!)^2 * Sum_{k=0..n} 1 / ((-5)^k * (k!)^2).

Original entry on oeis.org

1, 4, 81, 3644, 291521, 36440124, 6559222321, 1607009468644, 514243029966081, 208268427136262804, 104134213568131402001, 63001199208719498210604, 45360863430278038711634881, 38329929598584942711331474444, 37563331006613243857104844955121, 42258747382439899339242950574511124
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5^n n!^2 Sum[1/((-5)^k k!^2), {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 5 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 5^n * (n!)^2 * sum(k=0, n, 1 / ((-5)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 5*x).
a(0) = 1; a(n) = 5 * n^2 * a(n-1) + (-1)^n.

A354304 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).

A354305 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 1, 4, 9, 192, 1800, 103680, 529200, 232243200, 8230118400, 1463132160000, 39833773056000, 20858412072960000, 1615657835151360000, 584619573580922880000, 1908495817772544000000, 29184209113159670169600000, 3953548328298349068288000000, 185476873609942457647104000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Denominator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
    Accumulate[Table[(-1)^k/(k!)^2,{k,0,20}]]//Denominator (* Harvey P. Dale, Apr 25 2023 *)

Formula

Denominators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).

A074702 a(n) = ((n+1)^2*(n-1)*a(n-1)+(-1)^(n+1))/n.

Original entry on oeis.org

1, 4, 43, 806, 23213, 947864, 51997111, 3685295242, 327581799289, 35673657942572, 4670006130663971, 723461783075360174, 130890931830249779173, 27346855400248614577216, 6534075316966068976316143, 1770326031190494313270654994, 539845302687736618823239734641
Offset: 1

Views

Author

Vladeta Jovovic, Sep 03 2002

Keywords

Crossrefs

Cf. A073701.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,(n*a*(n+2)^2+(-1)^(n+2))/(n+1)}; Transpose[ NestList[ nxt,{1,1},15]][[2]] (* Harvey P. Dale, Jun 26 2013 *)

Formula

a(n) = round((n+1)!^2*BesselJ(0, 2))/n.

Extensions

More terms from Emeric Deutsch, Dec 18 2003
More terms from Harvey P. Dale, Jun 26 2013

A074703 a(n) = n^2*a(n-1)+1, a(1)=0.

Original entry on oeis.org

0, 1, 10, 161, 4026, 144937, 7101914, 454522497, 36816322258, 3681632225801, 445477499321922, 64148759902356769, 10841140423498293962, 2124863523005665616553, 478094292676274763724426
Offset: 1

Views

Author

Vladeta Jovovic, Sep 03 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,(n+1)^2 a+1}; Transpose[NestList[nxt,{1,0},20]][[2]] (* Harvey P. Dale, Dec 11 2013 *)
  • PARI
    a(n)=round((besseli(0,2)-2)*n!^2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

a(n) = round(n!^2*(BesselI(0, 2)-2)).
Showing 1-10 of 16 results. Next