cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A375231 Interleaving A006040 and A228229.

Original entry on oeis.org

1, 1, 3, 9, 19, 82, 229, 1313, 4581, 32826, 137431, 1181737, 5772103, 57905114, 323237769, 3705927297, 23273119369, 300180111058, 2094580743211, 30018011105801, 230403881753211, 3632179343801922, 30413312391423853, 523033825507476769, 4744476733062121069, 88392716510763573962
Offset: 0

Views

Author

Stefano Spezia, Aug 06 2024

Keywords

Comments

Conjecture: a(n) is the permanent of the n X n matrix whose generic element is given by M_{i,j} = 1 if i = j or i + j = 1 (mod 2), with i,j in [n].

Crossrefs

Cf. A006040, A078126 (determinant), A228229.

Programs

  • Mathematica
    A006040[n_]:=Sum[(n!/(n - k)!)^2, {k, 0, n}]; A228229[n_]:= n!*(n + 1)!*Sum[ 1/(k!*(k + 1)!),{k,0,n}]; a[n_]:=If[OddQ[n],A006040[(n+1)/2],A228229[n/2]]; Array[a,26,0]

Formula

a(n) = A006040((n+1)/2) for odd n.
a(n) = A228229(n/2) for even n.

A070910 Decimal expansion of BesselI(0,2).

Original entry on oeis.org

2, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Examples

			2.2795853023360672674372044408115333532858411...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:5 at page 20.

Crossrefs

Cf. A096789, A070913 (continued fraction), A006040.
Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), this sequence (I(0,2)).

Programs

  • Mathematica
    RealDigits[ BesselI[0, 2], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *)
    (* Or *) RealDigits[ Sum[ 1/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
  • PARI
    besseli(0,2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

Equals Sum_{k>=0} 1/k!^2.
From Peter Bala, Aug 19 2013: (Start)
Continued fraction expansion: 1/(1 - 1/(2 - 1/(5 - 4/(10 - 9/(17 - ... - (n-1)^2/(n^2+1 - ...)))))). See A006040. Cf. A096789.
This continued fraction is the particular case k = 0 of the result BesselI(k,2) = Sum_{n = 0..oo} 1/(n!*(n+k)!) = 1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See the remarks in A099597 for a sketch of the proof. (End)
From Amiram Eldar, May 29 2021: (Start)
Equals (1/e^2) * Sum_{k>=0} binomial(2*k,k)/k! = e^2 * Sum_{k>=0} (-1)^k*binomial(2*k,k)/k!.
Equal (1/(2*Pi)) * Integral_{x=0..2*Pi} exp(2*sin(x)) dx. (End)
Equals BesselJ(0,2*i). - Jianing Song, Sep 18 2021

A073701 a(n) = n^2*a(n-1)+(-1)^n.

Original entry on oeis.org

1, 0, 1, 8, 129, 3224, 116065, 5687184, 363979777, 29482361936, 2948236193601, 356736579425720, 51370067437303681, 8681541396904322088, 1701582113793247129249, 382855975603480604081024, 98011129754491034644742145, 28325216499047909012330479904, 9177370145691522519995075488897
Offset: 0

Views

Author

Vladeta Jovovic, Aug 30 2002

Keywords

Comments

The sequence b(n) := n!^2 satisfies the same recurrence below for a(n) with the initial conditions b(0) = 1, b(1) = 1. It follows that, for n >=3, a(n) = n!^2*(1/(4 + 4/(8 + 9/(15 +...+ (n-1)^2/(n^2-1))))). Hence BesselJ(0,2) := sum {k = 0..inf} (-1)^k/k!^2 = 1/(4 + 4/(8 + 9/(15 + ...+(n-1)^2/(n^2+1 + ...)))) = 0.22388 90779 ... . Cf. A006040. - Peter Bala, Jul 09 2008

Crossrefs

Programs

  • Magma
    [1] cat [ n eq 1 select 0 else n^2*Self(n-1)+(-1)^n:n in [1..15]]; // Marius A. Burtea, Feb 13 2020
  • Mathematica
    Join[{a = 1}, Table[a = a*n^2 + (-1)^n, {n, 15}]] (* Jayanta Basu, Jul 08 2013 *)

Formula

a(n) = n!^2*Sum_{k=0..n} (-1)^k/k!^2.
BesselJ(0, 2*sqrt(x))/(1-x) = Sum_{n>=0} a(n)*x^n/n!^2.
a(n) = round(n!^2*BesselJ(0, 2)), n>0.
Recurrence: a(0) = 1, a(1) = 0, a(n) = (n^2-1)*a(n-1) + (n-1)^2*a(n-2), n >= 2. - Peter Bala, Jul 09 2008, corrected by Georg Fischer, Feb 13 2020
a(n) = Sum_{k=0..n} (-1)^(n-k)*(k!*binomial(n,k))^2. - Ridouane Oudra, Jul 11 2025

A228229 Recurrence a(n) = n*(n + 1)*a(n-1) + 1 with a(0) = 1.

Original entry on oeis.org

1, 3, 19, 229, 4581, 137431, 5772103, 323237769, 23273119369, 2094580743211, 230403881753211, 30413312391423853, 4744476733062121069, 863494765417306034559, 181333900737634267257391, 43520136177032224141773841, 11837477040152764966562484753
Offset: 0

Views

Author

Peter Bala, Aug 19 2013

Keywords

Comments

Main subdiagonal (and main superdiagonal) of A099597. Cf. A006040 and A228230.

Crossrefs

Programs

  • Maple
    A228229 :=proc(n) option remember
        if n = 0 then 1
        else n*(n+1)*procname(n-1) + 1
        end if:
    end proc:
    seq(A228229(n), n = 0..20);
  • Mathematica
    RecurrenceTable[{a[n] == n*(n + 1)*a[n-1] + 1, a[0] == 1},a,{n,0,20}] (* Vaclav Kotesovec, May 06 2015 *)

Formula

a(n) = n!*(n + 1)!*sum {k = 0..n} 1/(k!*(k + 1)!).
Generating function: 1/(1 - x)*1/sqrt(x)*BesselI(1, 2*sqrt(x)) = sum {n >= 0} a(n)*x^n/(n!*(n + 1)!).
Defining recurrence equation: a(n) = n*(n + 1)*a(n-1) + 1 with a(0) = 1.
Alternative recurrence equation: a(0) = 1, a(1) = 3, and for n >= 2, a(n) = (n*(n + 1) + 1)*a(n-1) - n*(n - 1)*a(n-2).
The sequence b(n) := n!*(n + 1)! satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 2. It follows that we have the finite continued fraction expansion a(n) = n!*(n + 1)!*(1/(1 - 1/(3 - 2/(7 - 6/(13 - … - n*(n - 1)/(n^2 + n + 1)))))). Taking the limit yields the continued fraction expansion for the modified Bessel function value BesselI(1,2) = sum {k = 0..inf} 1/(k!*(k + 1)!) = 1/(1 - 1/(3 - 2/(7 - 6/(13 - ...- n*(n - 1)/(n^2 + n + 1 - ...))))) = 1.590636... (see A096789).
a(n) ~ BesselI(1,2) * n!*(n+1)!. - Vaclav Kotesovec, May 06 2015

A099597 Array T(n,k) read by antidiagonals: expansion of exp(x+y)/(1-xy).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 19, 5, 1, 1, 6, 33, 82, 33, 6, 1, 1, 7, 51, 229, 229, 51, 7, 1, 1, 8, 73, 496, 1313, 496, 73, 8, 1, 1, 9, 99, 919, 4581, 4581, 919, 99, 9, 1, 1, 10, 129, 1534, 11905, 32826, 11905, 1534, 129, 10, 1, 1, 11, 163, 2377, 25733, 137431, 137431, 25733, 2377, 163, 11, 1
Offset: 0

Views

Author

Ralf Stephan, Oct 28 2004

Keywords

Comments

Rows are polynomials in n whose coefficients are in A099599.
From Peter Bala, Aug 19 2013: (Start)
The k-th superdiagonal sequence of this square array occurs as the sequence of numerators in the convergents to a certain continued fraction representation of the constant BesselI(k,2), where BesselI(k,x) is a modified Bessel function of the first kind:
Let d_k(n) = T(n,n+k) = n! * (n+k)! * Sum_{i=0..n} 1/(i!*(i+k)!) denote the sequence of entries on the k-th superdiagonal. It satisfies the first-order recurrence equation d_k(n) = n*(n+k)*d_k(n-1) + 1 with d_k(0) = 1 and also the second-order recurrence d_k(n) = (n*(n+k)+1)*d_k(n-1) - (n-1)*(n-1+k)*d_k(n-2) with initial conditions d_k(0) = 1 and d_k(1) = k+2. This latter recurrence is also satisfied by the sequence n!*(n+k)!. From this observation we obtain the finite continued fraction expansion d_k(n) = n!*(n+k)!*(1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) ))))).
Taking the limit as n -> infinity produces a continued fraction representation for the modified Bessel function value BesselI(k,2) = Sum_{i=0..inf} 1/(i!*(i+k)!) = 1/(k! - k!/((k+2) -(k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See A070910 for the case k = 0 and A096789 for the case k = 1. (End)

Examples

			1, 1,  1,   1,    1,     1,
1, 2,  3,   4,    5,     6,
1, 3,  9,  19,   33,    51,
1, 4, 19,  82,  229,   496,
1, 5, 33, 229, 1313,  4581,
1, 6, 51, 496, 4581, 32826,
		

Crossrefs

Rows include A000012, A000027, A058331. Main diagonal is A006040. Antidiagonal sums are in A099598. Cf. A099599.
Cf. A088699. A228229 (main super and subdiagonal).

Programs

  • Maple
    #A099597
    T := proc(n,k) option remember;
    if n = 0 then 1 elif k = 0 then 1
    else n*k*thisproc(n-1,k-1) + 1
    fi
    end:
    # Diplay entries by antidiagonals
    seq(seq(T(n-k,k), k = 0..n), n = 0..10);
    # Peter Bala, Aug 19 2013
  • Mathematica
    T[, 0] = T[0, ] = 1;
    T[n_, k_] := T[n, k] = n k T[n - 1, k - 1] + 1;
    Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)

Formula

T(n,k) = Sum_{i=0..min(n,k)} C(n,i)*C(k,i)*i!^2. The LDU factorization of this square array is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!^2, 1!^2, 2!^2, ... ). Compare with A088699. - Peter Bala, Nov 06 2007
Recurrence equation: T(n,k) = n*k*T(n-1,k-1) + 1 with boundary conditions T(n,0) = T(0,n ) = 1.
Main subdiagonal and main superdiagonal [1, 3, 19, 229, ...] is A228229. - Peter Bala, Aug 19 2013
nth row/column o.g.f.: HypergeometricPFQ[{1,1,-n},{},x/(x-1)]/(1-x) (see comment in A099599). - Natalia L. Skirrow, Jul 18 2025

A217284 a(n) = Sum_{k=0..n} (n!/k!)^3.

Original entry on oeis.org

1, 2, 17, 460, 29441, 3680126, 794907217, 272653175432, 139598425821185, 101767252423643866, 101767252423643866001, 135452212975869985647332, 234061424022303335198589697, 514232948577000427431301564310, 1411055210895289172871491492466641, 4762311336771600958441283787074913376
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n!/k!)^3, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (n!/k!)^3); \\ Seiichi Manyama, May 02 2021

Formula

Recurrence: a(n) = (n+1)*(n^2-n+1)*a(n-1)-(n-1)^3*a(n-2).
a(n) ~ 2.12970254898330641813452361... * (n!)^3 = A271574 * (n!)^3.
a(n) = n^3 * a(n-1) + 1. - Seiichi Manyama, May 02 2021

A066998 a(0)=0; a(n) = n^2*a(n-1) + 1.

Original entry on oeis.org

0, 1, 5, 46, 737, 18426, 663337, 32503514, 2080224897, 168498216658, 16849821665801, 2038828421561922, 293591292704916769, 49616928467130933962, 9724917979557663056553, 2188106545400474187724426
Offset: 0

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Comments

if s(n) is a sequence defined as s(0)=x, s(n) = n^2*s(n-1) + k, then s(n) = n!^2*x + a(n)*k. - Gary Detlefs, Feb 20 2010

Crossrefs

This is the same recurrence relation as A006040 except A006040 has a(0) = 1.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[n]==n^2 a[n-1]+1},a,{n,20}] (* Harvey P. Dale, Jan 24 2019 *)
  • PARI
    a(n) = { my(a=0); for (n=1, n, a=n^2*a + 1); a } \\ Harry J. Smith, Apr 24 2010

Formula

a(n) = (n!)^2*Sum_{i=1..n} 1/(i!)^2.
a(n) = floor((1-BesselI(0, 2))*(n!)^2). - Benoit Cloitre, Nov 02 2002
Sum_{n>=0} a(n) * x^n / (n!)^2 = (BesselI(0,2*sqrt(x)) - 1) / (1 - x). - Ilya Gutkovskiy, Jan 23 2021

Extensions

Better description from James D. Klein, Feb 25 2002

A336247 a(n) = (n!)^n * Sum_{k=0..n} 1 / (k!)^n.

Original entry on oeis.org

1, 2, 9, 460, 684545, 50547203126, 280807908057046657, 165858480204085842350156792, 13997217669604247492958380810030809089, 218434494471443385260764665498960241287478619115850, 792268399795067334328715213043856435592857850955707257780000000001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 14 2020

Keywords

Crossrefs

Main diagonal of A343863.

Programs

  • Mathematica
    Table[(n!)^n Sum[1/(k!)^n, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = (n!)^n * sum(k=0, n, 1/(k!)^n); \\ Michel Marcus, Jul 14 2020

A336804 a(n) = (n!)^2 * Sum_{k=0..n} 2^(n-k) / (k!)^2.

Original entry on oeis.org

1, 3, 25, 451, 14433, 721651, 51958873, 5091969555, 651772103041, 105587080692643, 21117416138528601, 5110414705523921443, 1471799435190889375585, 497468209094520608947731, 195007537965052078707510553, 87753392084273435418379748851, 44929736747147998934210431411713
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[2^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 2*x).
a(0) = 1; a(n) = 2 * n^2 * a(n-1) + 1.

A336805 a(n) = (n!)^2 * Sum_{k=0..n} 3^(n-k) / (k!)^2.

Original entry on oeis.org

1, 4, 49, 1324, 63553, 4766476, 514779409, 75672573124, 14529134039809, 3530579571673588, 1059173871502076401, 384480115355253733564, 166095409833469612899649, 84210372785569093740122044, 49515699197914627119191761873, 33423096958592373305454439264276, 25668938464198942698589009354963969
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[3^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 3 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 3*x).
a(0) = 1; a(n) = 3 * n^2 * a(n-1) + 1.
Showing 1-10 of 29 results. Next