cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A047849 a(n) = (4^n + 2)/3.

Original entry on oeis.org

1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526, 1398102, 5592406, 22369622, 89478486, 357913942, 1431655766, 5726623062, 22906492246, 91625968982, 366503875926, 1466015503702, 5864062014806, 23456248059222, 93824992236886, 375299968947542
Offset: 0

Views

Author

Keywords

Comments

Counts closed walks of length 2n at a vertex of the cyclic graph on 6 nodes C_6. - Paul Barry, Mar 10 2004
The number of closed walks of odd length of the cyclic graph is zero. See the array w(N,L) and triangle a(K,N) given in A199571 for the general case. - Wolfdieter Lang, Nov 08 2011
A. A. Ivanov conjectures that the dimension of the universal embedding of the unitary dual polar space DSU(2n,4) is a(n). - J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004
Permutations with two fixed points avoiding 123 and 132.
Related to A024495(6n), A131708(6n+2), A024493(6n+4). First differences give A000302. - Paul Curtz, Mar 25 2008
Also the number of permutations of length n which avoid 4321 and 4123 (or 4321 and 3412, or 4123 and 3214, or 4123 and 2143). - Vincent Vatter, Aug 17 2009; minor correction by Henning Ulfarsson, May 14 2017
This sequence is related to A014916 by A014916(n) = n*a(n)-Sum_{i=0..n-1} a(i). - Bruno Berselli, Jul 27 2010, Mar 02 2012
For n >= 2, a(n) equals 2^n times the permanent of the (2n-2) X (2n-2) tridiagonal matrix with 1/sqrt(2)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n > 0, counts closed walks of length (n) at a vertex of a triangle with two (x2) loops at each vertex. - David Neil McGrath, Sep 11 2014
From Michel Lagneau, Feb 26 2015: (Start)
a(n) is also the sum of the largest odd divisors of the integers 1,2,3, ..., 2^n.
Proof:
All integers of the set {2^(n-1)+1, 2^(n-1)+2, ..., 2^n} are of the form 2^k(2m+1) where k and m integers. The greatest odd divisor of a such integer is 2m+1. Reciprocally, if 2m+1 is an odd integer <= 2^n, there exists a unique integer in the set {2^(n-1)+1, 2^(n-1)+2, ..., 2^n} where 2m+1 is the greatest odd divisor. Hence the recurrence relation:
a(n) = a(n+1) + (1 + 3 + ... + 2*2^(n-1) - 1) = a(n-1) + 4^(n-1) for n >= 2.
We obtain immediately: a(n) = a(1) + 4 + ... + 4^n = (4^n+2)/3. (End)
The number of Riordan graphs of order n+1. See Cheon et al., Proposition 2.8. - Peter Bala, Aug 12 2021
Let q = 2^(2n+1) and Omega_n be the Suzuki ovoid with q^2 + 1 points. Then a(n) is the number of orbits of the finite Suzuki group Sz(q) on 3-subsets of Omega_n. Link to result in References. - Paul M. Bradley, Jun 04 2023
Also the cogrowth sequence for the 8-element dihedral group D8 = . - Sean A. Irvine, Nov 04 2024

Examples

			a(2) = 6 for the number of round trips in C_6 from the six round trips from, say, vertex no. 1: 12121, 16161, 12161, 16121, 12321 and 16561. - _Wolfdieter Lang_, Nov 08 2011
		

Crossrefs

Programs

Formula

n-th difference of a(n), a(n-1), ..., a(0) is 3^(n-1) for n >= 1.
From Henry Bottomley, Aug 29 2000: (Start)
a(n) = (4^n + 2)/3.
a(n) = 4*a(n-1) - 2.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = 2*A007583(n-1) = A002450(n) + 1. (End)
a(n) = A047848(1,n).
With interpolated zeros, this is (-2)^n/6 + 2^n/6 + (-1)^n/3 + 1/3. - Paul Barry, Aug 26 2003
a(n) = A007583(n) - A002450(n) = A001045(2n+1) - A001045(2n) . - Philippe Deléham, Feb 25 2004
Second binomial transform of A078008. Binomial transform of 1, 1, 3, 9, 81, ... (3^n/3 + 2*0^n/3). a(n) = A078008(2n). - Paul Barry, Mar 14 2004
G.f.: (1-3*x)/((1-x)*(1-4*x)). - Herbert Kociemba, Jun 06 2004
a(n) = Sum_{k=0..n} 2^k*A121314(n,k). - Philippe Deléham, Sep 15 2006
a(n) = (A001045(2*n+1) + 1)/2. - Paul Barry, Dec 05 2007
From Bruno Berselli, Jul 27 2010: (Start)
a(n) = (A020988(n) + 2)/2 = A039301(n+1)/2.
Sum_{i=0..n} a(i) = A073724(n). (End)
For n >= 3, a(n) equals [2, 1, 1; 1, 2, 1; 1, 1, 2]^(n - 2)*{1, 1, 2}*{1, 1, 2}. - John M. Campbell, Jul 09 2011
a(n) = Sum_{k=0..n} binomial(2*n, mod(n,3) + 3*k). - Oboifeng Dira, May 29 2020
From Elmo R. Oliveira, Dec 21 2023: (Start)
E.g.f.: (exp(x)*(exp(3*x) + 2))/3.
a(n) = A178789(n+1)/3. (End)
a(n) = A000302(n) - A020988(n). - John Reimer Morales, Aug 03 2025

Extensions

New name from Charles R Greathouse IV, Dec 22 2011

A076024 a(n) = (2^n + 4)*(2^n - 1)/6.

Original entry on oeis.org

0, 1, 4, 14, 50, 186, 714, 2794, 11050, 43946, 175274, 700074, 2798250, 11188906, 44747434, 178973354, 715860650, 2863377066, 11453377194, 45813246634, 183252462250, 733008800426, 2932033104554, 11728128223914, 46912504507050, 187650001250986, 750599971449514
Offset: 0

Views

Author

Britney C. Gallivan (ogallivan(AT)verizon.net), Sep 30 2002

Keywords

Comments

Provides loss function for folding paper in half. It tells how much normalized paper has been lost with n folds. The sequence sets a limit on the number of times things of finite thickness can be folded in one direction.
Developed with J. R. Gallivan.
Binomial transform of A007051, with leading zero.
Second binomial transform of A078008(n-1) + 0^n/2. - Paul Barry, Apr 27 2004

Examples

			a(12) = 2798250 means that for the 12th folding of paper in half that 2798250 times as much material has been lost to potential folding as was lost on the first fold. [corrected by _Rick L. Shepherd_, May 08 2003]
		

References

  • Britney C. Gallivan, How to fold paper in half twelve times (an "impossible challenge" solved and explained), Historical Society of Pomona Valley, Pomona California, (2002)

Crossrefs

Cf. A007582.

Programs

  • GAP
    List([0..30], n-> (2^n +4)*(2^n -1)/6) # G. C. Greubel, May 04 2019
  • Magma
    [(2^n +4)*(2^n -1)/6 : n in [0..30]]; // Wesley Ivan Hurt, Jun 12 2014
    
  • Maple
    A076024:=n->(2^n + 4)*(2^n - 1)/6; seq(A076024(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
  • Mathematica
    Table[(2^n+4)*(2^n-1)/6, {n,0,30}] (* Wesley Ivan Hurt, Jun 12 2014 *)
  • PARI
    a(n) = 1<<(2*n-1)\3 + 1<<(n-1); \\ Kevin Ryde, Nov 26 2022 [replacing previous incorrect code]
    
  • Sage
    [(2^n +4)*(2^n -1)/6 for n in (0..30)] # G. C. Greubel, May 04 2019
    

Formula

a(n) = Sum_{k <= n} A007582(k).
G.f.: x*(1-3*x)/((1-x)*(1-2*x)*(1-4*x)).
E.g.f.: (3*exp(2*x) + exp(4*x) - 4*exp(x))/6 = (exp(2*x)*(2*cosh(x) - sinh(x)) - 2)/3.
a(n) = Sum_{k=0..n} C(n, k)*(3^(k-1) + 1 - 4*0^k/3)/2.
a(n) = Sum_{k=0..n} C(n, k+1)*(3^k + 1).
a(n) = Sum_{i < n} a(i) + A073724(n-1). - Ivan N. Ianakiev, Jun 12 2014

A160128 a(n) = number of grid points that are covered after (2^n)th stage of A139250.

Original entry on oeis.org

3, 7, 19, 63, 235, 919, 3651, 14575, 58267, 233031, 932083, 3728287, 14913099, 59652343, 238609315, 954437199, 3817748731, 15270994855, 61083979347, 244335917311, 977343669163, 3909374676567, 15637498706179
Offset: 0

Views

Author

Omar E. Pol, May 09 2009

Keywords

Crossrefs

Programs

  • PARI
    Vec((3 - 11*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^40)) \\ Colin Barker, May 13 2020

Formula

a(n) = A147614(A000079(n)).
a(n) = (1/9)*(2^(2*n+3) + 12*n + 19). [Nathaniel Johnston, Mar 29 2011]
It appears that a(n) = A139252(2^(n+1)). - Omar E. Pol, Sep 11 2012
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Paul Curtz, May 07 2020
G.f.: (3 - 11*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)). - Colin Barker, May 13 2020

Extensions

Terms after a(10) from Nathaniel Johnston, Mar 29 2011

A094195 Expansion of g.f.: (1-4*x)/((1-5*x)*(1-x)^2).

Original entry on oeis.org

1, 3, 10, 42, 199, 981, 4888, 24420, 122077, 610359, 3051766, 15258798, 76293955, 381469737, 1907348644, 9536743176, 47683715833, 238418579115, 1192092895522, 5960464477554, 29802322387711, 149011611938493, 745058059692400, 3725290298461932, 18626451492309589
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2004

Keywords

Comments

An approximation to A091843.

Crossrefs

Programs

  • Magma
    [(5^(n+1) +12*n +11)/16: n in [0..40]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    CoefficientList[Series[(1-4x)/((1-5x)(1-x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{7,-11,5},{1,3,10},30] (* Harvey P. Dale, Dec 31 2011 *)
  • SageMath
    [(5^(n+1) +12*n +11)/16 for n in range(41)] # G. C. Greubel, Aug 18 2023

Formula

a(n) = (5^(n+1) + 12*n + 11)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), with a(0)=1, a(1)=3, a(2)=10. - Harvey P. Dale, Dec 31 2011
E.g.f.: (1/16)*(5*exp(5*x) + (11 + 12*x)*exp(x)). - G. C. Greubel, Aug 18 2023

A094250 Array, A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 1, 3, 8, 15, 1, 3, 9, 22, 31, 1, 3, 10, 31, 63, 63, 1, 3, 11, 42, 117, 185, 127, 1, 3, 12, 55, 199, 459, 550, 255, 1, 3, 13, 70, 315, 981, 1825, 1644, 511, 1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023, 1, 3, 15, 106, 673, 3273, 11203, 24420, 29133, 14767, 2047
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2004

Keywords

Examples

			Array, A(n, k), begins:
  1, 3,  7, 15,  31,   63,   127,    255,     511, ... A000225;
  1, 3,  8, 22,  63,  185,   550,   1644,    4925, ... A047926;
  1, 3,  9, 31, 117,  459,  1825,   7287,   29133, ... A073724;
  1, 3, 10, 42, 199,  981,  4888,  24420,  122077, ... A094195;
  1, 3, 11, 55, 315, 1871, 11203,  67191,  403115, ... A094259;
  1, 3, 12, 70, 471, 3273, 22882, 160140, 1120941, ...
Antidiagonals, T(n, k), begins as:
  1;
  1, 3;
  1, 3,  7;
  1, 3,  8, 15;
  1, 3,  9, 22,  31;
  1, 3, 10, 31,  63,   63;
  1, 3, 11, 42, 117,  185,  127;
  1, 3, 12, 55, 199,  459,  550,  255;
  1, 3, 13, 70, 315,  981, 1825, 1644,  511;
  1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023;
		

Crossrefs

Programs

  • Magma
    A094250:= func< n,k | ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 >;
    [A094250(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    A094250[n_, k_]:= ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2;
    Table[A094250[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    def A094250(n, k): return ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2
    flatten([[A094250(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023

Formula

A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2 (array).
T(n, k) = ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 (antidiagonals).
G.f. for row n: (1-(n+1)*x)/((1-(n+2)*x)*(1-x)^2).

A099214 a(n)=4a(n-1)-4a(n-2)+4a(n-3).

Original entry on oeis.org

1, 2, 4, 12, 40, 128, 400, 1248, 3904, 12224, 38272, 119808, 375040, 1174016, 3675136, 11504640, 36014080, 112738304, 352915456, 1104764928, 3458351104, 10826006528, 33889681408, 106088103936, 332097716224, 1039597174784
Offset: 0

Views

Author

Paul Barry, Oct 06 2004

Keywords

Comments

Binomial transform of A099213.

Crossrefs

Cf. A073724.

Formula

G.f.: (1-2x)/((1-2x)^2-4x^3); a(n)=sum{k=0..floor(n/3), binomial(n-k, 2k)4^k*2^(n-3k)}.

A073722 Least k such that sigma(k) mod primepi(k) = n or zero if no such number exists.

Original entry on oeis.org

2, 4, 10, 8, 17, 42, 23, 111, 32, 59, 31, 67, 49, 110, 63, 60, 82, 84, 89, 75, 191, 98, 141, 97, 101, 256, 171, 169, 148, 144, 140, 159, 143, 222, 220, 172, 206, 2124, 183, 315, 263, 567, 201, 358, 204, 470, 243, 391, 264, 563, 295, 382, 290, 285, 313, 324, 307
Offset: 0

Views

Author

Labos Elemer, Aug 05 2002

Keywords

Examples

			n=8: a(8)=32 since sigma(32)=63, primepi(32)=11, and 63 mod 11 = 8.
		

Crossrefs

Programs

  • Mathematica
    t=Table[0, {100}]; Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 2, 10000}]; t

Formula

a(n) = min{x: A000203(x) mod A000720(x) = n}.

Extensions

a(0)=2 inserted by Sean A. Irvine, Dec 16 2024
Showing 1-7 of 7 results.