A122853
Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.
Original entry on oeis.org
3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1
-
Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
-
select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011
A121938
Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.
Original entry on oeis.org
19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1
-
Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)
A155603
a(n) = 5^n+3^n-1.
Original entry on oeis.org
1, 7, 33, 151, 705, 3367, 16353, 80311, 397185, 1972807, 9824673, 49005271, 244672065, 1222297447, 6108298593, 30531927031, 152630937345, 763068593287, 3815084686113, 19074648589591, 95370918425025, 476847618556327
Offset: 0
Cf.
A074501,
A020515,
A155588,
A155590,
A155592,
A155593,
A155594,
A155596,
A155597,
A155598,
A155599,
A155600,
A155601,
A155602.
-
Table[5^n+3^n-1,{n,0,30}] (* or *) LinearRecurrence[{9,-23,15},{1,7,33},30] (* Harvey P. Dale, Oct 14 2020 *)
-
a(n)=5^n+3^n-1 \\ Charles R Greathouse IV, Jun 11 2015
A335095
Square array T(n,k), n>=0, k>=0, read by antidiagonals: T(n,k) = ((2n+1)!!)^k * Sum_{j=1..n} 1/(2*j+1)^k.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 34, 71, 4, 0, 1, 152, 1891, 744, 5, 0, 1, 706, 55511, 164196, 9129, 6, 0, 1, 3368, 1745731, 41625144, 20760741, 129072, 7, 0, 1, 16354, 57365351, 11575291716, 56246975289, 3616621254, 2071215, 8
Offset: 0
Square array begins:
0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, ...
2, 8, 34, 152, 706, ...
3, 71, 1891, 55511, 1745731, ...
4, 744, 164196, 41625144, 11575291716, ...
-
T[n_, k_] := ((2*n + 1)!!)^k * Sum[1/(2*j + 1)^k, {j, 1, n}]; Table[T[k, n - k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
-
{T(n, k) = prod(j=1, n, 2*j+1)^k*sum(j=1, n, 1/(2*j+1)^k)}
A121824
Primes of the form (3^n + 5^n)/2.
Original entry on oeis.org
17, 353, 198593
Offset: 1
-
Select[Table[(3^n + 5^n)/2,{n,100}],PrimeQ] (* James C. McMahon, Oct 22 2024 *)
-
for(n=1,17, m=(3^(2^n)+5^(2^n))/2;if(isprime(m),print1(m","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 31 2007
A245806
a(n) = 3^n + 10^n.
Original entry on oeis.org
2, 13, 109, 1027, 10081, 100243, 1000729, 10002187, 100006561, 1000019683, 10000059049, 100000177147, 1000000531441, 10000001594323, 100000004782969, 1000000014348907, 10000000043046721, 100000000129140163, 1000000000387420489, 10000000001162261467
Offset: 0
-
[3^n+10^n: n in [0..25]];
-
I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1)-30*Self(n-2): n in [1..25]];
-
Table[(3^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 13 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
-
a(n)=3^n + 10^n \\ Charles R Greathouse IV, Aug 26 2014
Original entry on oeis.org
2, 16, 50, 176, 738, 3408, 16402, 80368, 397250, 1972880, 9824754, 49005360, 244672162, 1222297552, 6108298706, 30531927152, 152630937474, 763068593424, 3815084686258, 19074648589744, 95370918425186, 476847618556496
Offset: 0
-
[8*n+3^n+5^n: n in [0..25]]; // Bruno Berselli, Feb 27 2013
-
CoefficientList[Series[2 (1 - 2 x - 23 x^2 + 56 x^3)/((1-5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
Table[8 n + 3^n + 5^n, {n, 0, 25}] (* Bruno Berselli, Feb 27 2013 *)
-
for(n=0, 25, print1(8*n+3^n+5^n", ")); \\ Bruno Berselli, Feb 27 2013
Original entry on oeis.org
2, 10, 38, 158, 714, 3378, 16366, 80326, 397202, 1972826, 9824694, 49005294, 244672090, 1222297474, 6108298622, 30531927062, 152630937378, 763068593322, 3815084686150, 19074648589630, 95370918425066, 476847618556370
Offset: 0
-
[2*n+3^n+5^n: n in [0..30]]; // Vincenzo Librandi, Feb 27 2013
-
Table[2 n + 3^n + 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[2 (1 - 5 x + x^2 + 11 x^3)/((1 -5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
LinearRecurrence[{10,-32,38,-15},{2,10,38,158},30] (* Harvey P. Dale, Jan 18 2021 *)
-
a(n)=2*n+3^n+5^n \\ Charles R Greathouse IV, Feb 27 2013
Original entry on oeis.org
2, 6, 30, 146, 698, 3358, 16342, 80298, 397170, 1972790, 9824654, 49005250, 244672042, 1222297422, 6108298566, 30531927002, 152630937314, 763068593254, 3815084686078, 19074648589554, 95370918424986, 476847618556286
Offset: 0
-
[3^n+5^n-2*n: n in [0..30]]; // Vincenzo Librandi, Feb 27 2013
-
Table[3^n + 5^n - 2 n, {n, 0, 30}] (* or *) CoefficientList[Series[2 (1 - 7 x + 17 x^2 - 19 x^3)/((1 - 5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
LinearRecurrence[{10,-32,38,-15},{2,6,30,146},30] (* Harvey P. Dale, Apr 27 2016 *)
A120969
a(n) = 8n+5^n-3^n.
Original entry on oeis.org
0, 10, 32, 122, 576, 2922, 14944, 75994, 384128, 1933514, 9706656, 48651066, 243609280, 1219108906, 6098732768, 30503229338, 152544844032, 762810313098, 3814309845280, 19072324066810, 95363944856384, 476826697850090
Offset: 0
-
[8*n+5^n-3^n: n in [0..30]]; // Vincenzo Librandi, Feb 25 2013
-
I:=[0,10,32,122]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+38*Self(n-3)-15*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 25 2013
-
CoefficientList[Series[2 x (5 - 34 x + 61 x^2)/((1-x)^2(1-5x)(1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 23 2013 *)
Showing 1-10 of 15 results.
Comments