cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A122853 Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006

Keywords

Comments

(3^k + 5^k)/8 = A074606(k)/8 = A081186(k)/4.
Corresponding primes of the form (3^k + 5^k)/2^3 are listed in {A121938(n)} = {A079773(a(n))} = {19, 421, 10039, 95383574161, 2384331073699, ...}.
No other terms less than 100000. - Robert Price, Apr 28 2012

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
  • PARI
    select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011

Extensions

a(11)-a(15) from Robert Price, Apr 28 2012

A121938 Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.

Original entry on oeis.org

19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Comments

Corresponding numbers k such that (3^k + 5^k)/8 is prime are listed in A122853. All these numbers are primes. - Alexander Adamchuk, Sep 14 2006
The next term is too large to include. - Alexander Adamchuk, Sep 14 2006

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)

Formula

a(n) = (A122853(n)^3 + A122853(n)^5)/8. a(n) = A074606[A122853(n)]/8 = A081186[A122853(n)]/4. a(n) = A079773[A122853(n)]. - Alexander Adamchuk, Sep 14 2006

Extensions

More terms from Alexander Adamchuk, Sep 14 2006

A155603 a(n) = 5^n+3^n-1.

Original entry on oeis.org

1, 7, 33, 151, 705, 3367, 16353, 80311, 397185, 1972807, 9824673, 49005271, 244672065, 1222297447, 6108298593, 30531927031, 152630937345, 763068593287, 3815084686113, 19074648589591, 95370918425025, 476847618556327
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 25 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x)+1/(1-3*x)-1/(1-x).
E.g.f.: e^(5*x)+e^(3*x)-e^x.
a(n) = 8*a(n-1)-15*a(n-2)-8 with a(0)=1, a(1)=7. - Vincenzo Librandi, Jul 21 2010
a(n) = A074606(n)-1. - R. J. Mathar, Mar 10 2022

A335095 Square array T(n,k), n>=0, k>=0, read by antidiagonals: T(n,k) = ((2n+1)!!)^k * Sum_{j=1..n} 1/(2*j+1)^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 34, 71, 4, 0, 1, 152, 1891, 744, 5, 0, 1, 706, 55511, 164196, 9129, 6, 0, 1, 3368, 1745731, 41625144, 20760741, 129072, 7, 0, 1, 16354, 57365351, 11575291716, 56246975289, 3616621254, 2071215, 8
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2020

Keywords

Examples

			Square array begins:
  0,   0,      0,        0,           0, ...
  1,   1,      1,        1,           1, ...
  2,   8,     34,      152,         706, ...
  3,  71,   1891,    55511,     1745731, ...
  4, 744, 164196, 41625144, 11575291716, ...
		

Crossrefs

Column k=0..4 give A001477, A334670, A335090, A335091, A335092.
Rows n=0-2 give: A000004, A000012, A074606.
Main diagonal gives A335096.
Cf. A291656.

Programs

  • Mathematica
    T[n_, k_] := ((2*n + 1)!!)^k * Sum[1/(2*j + 1)^k, {j, 1, n}]; Table[T[k, n - k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    {T(n, k) = prod(j=1, n, 2*j+1)^k*sum(j=1, n, 1/(2*j+1)^k)}

Formula

T(0,k) = 0, T(1,k) = 1 and T(n,k) = ((2*n-1)^k+(2*n+1)^k) * T(n-1,k) - (2*n-1)^(2*k) * T(n-2, k) for n>1.

A121824 Primes of the form (3^n + 5^n)/2.

Original entry on oeis.org

17, 353, 198593
Offset: 1

Views

Author

Zak Seidov, Aug 27 2006

Keywords

Comments

Corresponding n are 2^1, 2^2, 2^3. What are the following terms? Cf. A074606 3^n + 5^n.
Since x^n + y^n has x+y as a factor if n is odd, we can assume that n is a power of 2. Maple shows that up to n = 2^15, there are no more primes of the form (3^n + 5^n)/2. This raises the question: Is it true that x^n + (x+2)^n is irreducible over Q for n a power of 2? - W. Edwin Clark, Sep 10 2006
Next term, if it exists, is > (3^2500+5^2500)/2. - Hugo Pfoertner, Sep 10 2006
No more terms <= (3^(2^17)+5^(2^17))/2=(3^131072+5^131072)/2. Hence the next term, if it exists, is greater than 10^91616 (so is too large to include). - Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 31 2007

Crossrefs

Programs

  • Mathematica
    Select[Table[(3^n + 5^n)/2,{n,100}],PrimeQ] (* James C. McMahon, Oct 22 2024 *)
  • PARI
    for(n=1,17, m=(3^(2^n)+5^(2^n))/2;if(isprime(m),print1(m","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 31 2007

Extensions

Edited by N. J. A. Sloane, Jan 13 2008

A245806 a(n) = 3^n + 10^n.

Original entry on oeis.org

2, 13, 109, 1027, 10081, 100243, 1000729, 10002187, 100006561, 1000019683, 10000059049, 100000177147, 1000000531441, 10000001594323, 100000004782969, 1000000014348907, 10000000043046721, 100000000129140163, 1000000000387420489, 10000000001162261467
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 3^n+k^n: A034472 (k=1), A007689 (k=2), A008776 (k=3), A074605 (k=4), A074606 (k=5), A074607 (k=6), A074608 (k=7), A074609 (k=8), A074610 (k=9), this sequence (k=10).

Programs

  • Magma
    [3^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1)-30*Self(n-2): n in [1..25]];
    
  • Mathematica
    Table[(3^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 13 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
  • PARI
    a(n)=3^n + 10^n \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: (2-13*x)/((1-3*x)(1-10*x)).
E.g.f.: e^(3*x) + e^(10*x).
a(n) = 13*a(n-1)-30*a(n-2) for n>1.
a(n) = A000244(n) + A011557(n). - Michel Marcus, Aug 04 2014

A120948 8n+3^n+5^n.

Original entry on oeis.org

2, 16, 50, 176, 738, 3408, 16402, 80368, 397250, 1972880, 9824754, 49005360, 244672162, 1222297552, 6108298706, 30531927152, 152630937474, 763068593424, 3815084686258, 19074648589744, 95370918425186, 476847618556496
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [8*n+3^n+5^n: n in [0..25]]; // Bruno Berselli, Feb 27 2013
  • Mathematica
    CoefficientList[Series[2 (1 - 2 x - 23 x^2 + 56 x^3)/((1-5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
    Table[8 n + 3^n + 5^n, {n, 0, 25}] (* Bruno Berselli, Feb 27 2013 *)
  • PARI
    for(n=0, 25, print1(8*n+3^n+5^n", ")); \\ Bruno Berselli, Feb 27 2013
    

Formula

G.f.: 2*(1-2*x-23*x^2+56*x^3)/((1-5*x)*(1-3*x)*(1-x)^2). - Vincenzo Librandi, Feb 26 2013

Extensions

Edited by Ray Chandler, Sep 06 2006

A120949 2n+3^n+5^n.

Original entry on oeis.org

2, 10, 38, 158, 714, 3378, 16366, 80326, 397202, 1972826, 9824694, 49005294, 244672090, 1222297474, 6108298622, 30531927062, 152630937378, 763068593322, 3815084686150, 19074648589630, 95370918425066, 476847618556370
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [2*n+3^n+5^n: n in [0..30]]; // Vincenzo Librandi, Feb 27 2013
    
  • Mathematica
    Table[2 n + 3^n + 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[2 (1 - 5 x + x^2 + 11 x^3)/((1 -5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
    LinearRecurrence[{10,-32,38,-15},{2,10,38,158},30] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    a(n)=2*n+3^n+5^n \\ Charles R Greathouse IV, Feb 27 2013

Formula

G.f.: 2*(1-5*x+x^2+11*x^3)/((1-5*x)*(1-3*x)*(1-x)^2). - Vincenzo Librandi, Feb 26 2013

Extensions

Edited by Ray Chandler, Sep 06 2006

A120950 3^n+5^n-2n.

Original entry on oeis.org

2, 6, 30, 146, 698, 3358, 16342, 80298, 397170, 1972790, 9824654, 49005250, 244672042, 1222297422, 6108298566, 30531927002, 152630937314, 763068593254, 3815084686078, 19074648589554, 95370918424986, 476847618556286
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [3^n+5^n-2*n: n in [0..30]]; // Vincenzo Librandi, Feb 27 2013
  • Mathematica
    Table[3^n + 5^n - 2 n, {n, 0, 30}] (* or *) CoefficientList[Series[2 (1 - 7 x + 17 x^2 - 19 x^3)/((1 - 5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
    LinearRecurrence[{10,-32,38,-15},{2,6,30,146},30] (* Harvey P. Dale, Apr 27 2016 *)

Formula

G.f.: 2*(1-7*x+17*x^2-19*x^3)/((1-5*x)*(1-3*x)*(1-x)^2). - Vincenzo Librandi, Feb 26 2013

Extensions

Edited by Ray Chandler, Sep 06 2006

A120969 a(n) = 8n+5^n-3^n.

Original entry on oeis.org

0, 10, 32, 122, 576, 2922, 14944, 75994, 384128, 1933514, 9706656, 48651066, 243609280, 1219108906, 6098732768, 30503229338, 152544844032, 762810313098, 3814309845280, 19072324066810, 95363944856384, 476826697850090
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [8*n+5^n-3^n: n in [0..30]]; // Vincenzo Librandi, Feb 25 2013
    
  • Magma
    I:=[0,10,32,122]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+38*Self(n-3)-15*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 25 2013
  • Mathematica
    CoefficientList[Series[2 x (5 - 34 x + 61 x^2)/((1-x)^2(1-5x)(1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 23 2013 *)

Formula

G.f.: 2*x*(5-34*x+61*x^2)/((1-x)^2*(1-5*x)*(1-3*x)). - Vincenzo Librandi, Feb 23 2013

Extensions

Edited by Ray Chandler, Sep 06 2006
Showing 1-10 of 15 results. Next