cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006095 Gaussian binomial coefficient [n, 2] for q = 2.

Original entry on oeis.org

0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Keywords

Comments

Number of 4-block coverings of an n-set where every element of the set is covered by exactly 3 blocks (if offset is 3), so a(n) = (1/4!)*(4^n-6*2^n+8). - Vladeta Jovovic, Feb 20 2001
Number of non-coprime pairs of polynomials (f,g) with binary coefficients where both f and g have degree n+1 and nonzero constant term. - Luca Mariot and Enrico Formenti, Sep 26 2016
Number of triplets found from the integers 1 to 2^n-1 by converting to binary and performing an XOR operation on the corresponding bits of each pair. Defining addition in this carryless way (0+0=1+1=0, 0+1=1+0=1), each triplet (A,B,C) has the property A+B=C, A+C=B and B+C=A. For example, n=3 gives the 7 triplets (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6). Each integer appears in the set of triplets 2^(n-1)-1 times, for example 3 for n=3. - Ian Duff, Oct 05 2019
Number of 2-dimensional vector subspaces of (Z_2)^n, so also number of Klein subgroups of the group (C_2)^n. - Robert FERREOL, Jul 28 2021

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

First differences: A006516.
Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), this sequence (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Maple
    a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
    seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
    A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
    a := n -> (2^n - 2)*(2^n - 1)/6:
    seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
  • Mathematica
    Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
    (* Next, using elementary symmetric functions *)
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203235 *)
    Table[a[n]/2, {n, 2, 32}]  (* A006095 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
  • PARI
    a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
  • Sage
    [gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^2/((1-x)(1-2x)(1-4x)).
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 = 4^n/6 - 2^(n-1) + 1/3.
Row sums of triangle A130324. - Gary W. Adamson, May 24 2007
a(n) = Stirling2(n+1,3) + Stirling2(n+1,4). - Zerinvary Lajos, Oct 04 2007; corrected by R. J. Mathar, Mar 19 2011
a(n) = A139250(2^(n-1) - 1), n >= 1. - Omar E. Pol, Mar 03 2011
a(n) = 4*a(n-1) + 2^(n-1) - 1, n >= 2. - Vincenzo Librandi, Mar 19 2011
a(0) = 0, a(1) = 0, a(2) = 1, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 22 2011
a(n) = Sum_{k=0..n-2} 2^k*C(2*n-k-2, k), n >= 2. - Johannes W. Meijer, Aug 19 2013
a(n) = Sum_{i=0..n-2, j=i..n-2} 2^{i+j} = 2^0 * (2^0 + 2^1 + ... + 2^(n-2)) + 2^1 * (2^1 + 2^2 + ... + 2^(n-2)) + ... + 2^(n-2) * 2^(n-2), n>1. - J. M. Bergot, May 08 2017
a(n) = a(n-1) + A000217(A000225(n-1)), n > 0. - Ivan N. Ianakiev, Dec 11 2017
E.g.f.: (2*exp(x)-3*exp(2*x)+exp(4*x))/6. - Paul Weisenhorn, Aug 22 2021
From Peter Bala, Jul 01 2025: (Start)
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(3*n)/b(n)*x^n/n ) = 1 + 7*x + 35*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following are examples of telescoping series:
Sum_{n >= 2} 2^n/a(n) = 6, follows from 1 - (1/6)*Sum_{k = 2..n} 2^k/a(k) = 1/(2^n - 1).
Sum_{n >= 2} 2^n/(a(n)*a(n+2)) = 6/49, follows from 1 - (49/6)*Sum_{k = 2..n} 2^k/(a(k)*a(k+2)) = 1/A006096(n+2);
Sum_{n >= 2} 4^n/(a(n)*a(n+2)) = 26/49, follows from 13 - (49/2)*Sum_{k = 2..n} 4^k/(a(k)*a(k+2)) = A086224(n)/A006096(n+2);
Sum_{n >= 2} 8^n/(a(n)*a(n+2)) = 129/49, follows from 43 - (49/3)*Sum_{k = 2..n} 8^k/(a(k)*a(k+2)) = A171479(n+1)/A006096(n+2). (End)

A075015 Smallest k such that the concatenation k, k+1, k+2 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 5, 4, 2, 8, 8, 4, 2, 104, 3, 18, 17, 2, 4, 18, 5, 8, 3, 4, 23, 2, 5, 118, 37, 8, 39, 18, 8, 34, 118, 14, 110, 4, 2, 18, 1, 104, 47, 10, 8, 32, 49, 18, 104, 48, 17, 142, 48, 8, 8, 118, 4, 66, 21, 18, 48, 70, 5, 50
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(13) = 2 as 13 divides 234.
		

Crossrefs

Programs

  • Mathematica
    Table[Module[{k=1},While[!Divisible[FromDigits[Flatten[ IntegerDigits/@ Range[k,k+2]]],n],k++];k],{n,70}] (* Harvey P. Dale, May 10 2012 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075016 Smallest k such that the concatenation k, k-1,k-2 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 12, 4, 105, 2, 2, 4, 7, 4, 18, 22, 2, 12, 11, 4, 27, 118, 4, 106, 21, 2, 23, 14, 12, 34, 2, 4, 112, 18, 105, 22, 15, 2, 39, 34, 7, 14, 9, 4, 141, 52, 7, 118, 58, 4, 12, 106, 18, 50, 38, 22, 10, 54, 106, 14, 157
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(11) = 12 as 11 divides 121110.
		

Crossrefs

Programs

  • Mathematica
    skc[n_]:=Module[{k=2},While[Mod[FromDigits[Flatten[IntegerDigits/@ Range[ k,k-2,-1]]],n]!=0,k++];k]; Array[skc,70] (* Harvey P. Dale, Nov 01 2019 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075017 Smallest k such that the concatenation k, k+1,k+2,k+3 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

1, 1, 3, 3, 2, 3, 2, 3, 3, 7, 8, 3, 7, 17, 12, 3, 5, 3, 19, 17, 24, 15, 17, 3, 22, 7, 3, 17, 17, 27, 6, 3, 15, 5, 2, 3, 9, 19, 15, 17, 15, 45, 44, 37, 12, 17, 39, 3, 45, 47, 21, 41, 52, 3, 37, 17, 57, 17, 62, 57, 53, 53, 66, 3, 7, 15, 2, 21, 63, 17, 12, 3, 6, 9, 72
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(7) = 2 as 7 divides 2345.
		

Crossrefs

Programs

  • PARI
    isok(k, n) = my(v = Str(k)); for (j=1, 3, v = concat(v, Str(k+j))); (eval(v) % n) == 0;
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jan 21 2017

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075018 Smallest k such that the concatenation k, k-1,k-2,k-3 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 5, 5, 6, 3, 18, 9, 11, 5, 3, 15, 13, 15, 19, 23, 18, 29, 29, 15, 28, 11, 33, 5, 4, 3, 40, 15, 18, 13, 18, 15, 28, 19, 24, 23, 26, 39, 7, 51, 33, 29, 55, 15, 53, 53, 30, 63, 54, 33, 18, 5, 57, 41, 56, 63, 69, 71, 60, 15, 63
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(7) = 5 as 7 divides 5432.
		

Crossrefs

Programs

  • Mathematica
    Transpose[Flatten[Table[Select[Reverse[Partition[Range[100,0,-1], 4,1]], Divisible[FromDigits[ Flatten[IntegerDigits/@#]],n]&,1],{n,70}],1]] [[1]] (* Harvey P. Dale, Nov 22 2011 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Showing 1-5 of 5 results.