cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A077259 First member of the Diophantine pair (m,k) that satisfies 5*(m^2 + m) = k^2 + k; a(n) = m.

Original entry on oeis.org

0, 2, 6, 44, 116, 798, 2090, 14328, 37512, 257114, 673134, 4613732, 12078908, 82790070, 216747218, 1485607536, 3889371024, 26658145586, 69791931222, 478361013020, 1252365390980, 8583840088782, 22472785106426, 154030760585064, 403257766524696, 2763969850442378
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002

Keywords

Examples

			a(3) = (2*6) - 2 + (2*17) = 12 - 2 + 34 = 44.
G.f. = 2*x + 6*x^2 + 44*x^3 + 116*x^4 + 798*x^5 + 2090*x^6 + 14328*x^7 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(2*x*(x+1)^2/((1-x)*(x^2-4*x-1)*(x^2+4*x-1)))); // G. C. Greubel, Jul 15 2018
  • Maple
    f := gfun:-rectoproc({a(-2) = 2, a(-1) = 0, a(0) = 0, a(1) = 2, a(n) = 18*a(n - 2) - a(n - 4) + 8}, a(n), remember): map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 24 2020
  • Mathematica
    LinearRecurrence[{1, 18, -18, -1, 1}, {0, 2, 6, 44, 116}, 30] (* G. C. Greubel, Jul 15 2018 *)
    a[ n_] := With[{m = Max[n, -1 - n]}, SeriesCoefficient[ 2 x (x + 1)^2 / ((1 - x) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, m}]]; (* Michael Somos, Jul 15 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(2*x*(x+1)^2/((1-x)*(x^2-4*x-1)*(x^2+4*x-1)))) \\ G. C. Greubel, Jul 15 2018
    

Formula

Let b(n) be A007805(n). Then with a(0)=0, a(1)=2, a(2*n+2) = 2*a(2*n+1) - a(2*n) + 2*b(n), a(2*n+3) = 2*a(2*n+2) - a(2*n+1) + 2*b(n+1).
a(n) = (A000045(A007310(n+1))-1)/2. - Vladeta Jovovic, Nov 02 2002 [corrected by R. J. Mathar, Sep 16 2009]
a(0)=0, a(1)=2, a(n+2) = 4 + 9*a(n) + 2*sqrt(1 +20*a(n) +20*a(n)^2). - Herbert Kociemba, May 12 2008
a(0)=0, a(1)=2, a(2)=6, a(3)=44, a(n) = 18*a(n-2) - a(n-4) + 8. - Robert Phillips, Sep 01 2008
G.f.: 2*x*(1+x)^2/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jul 15 2018
a(2*n) = A049651(2*n); a(2*n+1) = A110679(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020
From Vladimir Pletser, Feb 07 2021: (Start)
a(n) = ((5+sqrt(5))*(2+sqrt(5))^n + (5-sqrt(5))*(2-sqrt(5))^n)/20 - 1/2 for even n;
a(n) = ((5+3*sqrt(5))*(2+sqrt(5))^n + (5-3*sqrt(5))*(2-sqrt(5))^n)/20 - 1/2 for odd n. (End)

Extensions

More terms from Colin Barker, Mar 23 2014

A077262 Second member of the Diophantine pair (m,k) that satisfies 5*(m^2 + m) = k^2 + k; a(n) = k.

Original entry on oeis.org

0, 5, 14, 99, 260, 1785, 4674, 32039, 83880, 574925, 1505174, 10316619, 27009260, 185124225, 484661514, 3321919439, 8696898000, 59609425685, 156059502494, 1069647742899, 2800374146900, 19194049946505, 50250675141714, 344423251294199, 901711778403960
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002

Keywords

Comments

The first member of the (m,k) pairs are in A077259.

Examples

			a(3) = (-1 + sqrt(8*4950 + 1))/2 = (-1 + sqrt(39601))/2 = (199 - 1)/2 = 99.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = -6, a(-1) = -1, a(0) = 0, a(1) = 5, a(n) = 18*a(n - 2) - a(n - 4) + 8}, a(n), remember); map(f, [$ (0 .. 40)])[]; #Vladimir Pletser, Jul 26 2020
  • Mathematica
    CoefficientList[Series[(x (x^3 + 5 x^2 - 9 x - 5))/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Apr 21 2021 *)
  • PARI
    concat(0, Vec(x*(x^3+5*x^2-9*x-5)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) are the entries in A077261.
a(n) = (sqrt(5*A000045(A007310(n+1))^2 - 4) - 1)/2. - Vladeta Jovovic, Nov 02 2002. - Definition corrected by R. J. Mathar, Sep 16 2009
G.f.: (x*(x^3+5*x^2-9*x-5))/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = 18*a(n-2) - a(n-4) + 8. - Vladimir Pletser, Mar 23 2020 ; a(-2) = -6, a(-1) = -1, a(0) = 0, a(1) = 5. [Edited by Vladimir Pletser, Jul 26 2020]
From Vladimir Pletser, Jul 26 2020: (Start)
Can be defined for negative n by setting a(-n) = - a(n-1) - 1 for all n in Z.
a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5). (End)

A077261 Triangular numbers that are 5 times another triangular number.

Original entry on oeis.org

0, 15, 105, 4950, 33930, 1594005, 10925475, 513264780, 3517969140, 165269665275, 1132775137725, 53216318953890, 364750076378430, 17135489433487425, 117448391818716855, 5517574381263997080, 37818017415550449000, 1776641815277573572455, 12177284159415425861265
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002

Keywords

Examples

			a(3)=5*990=4950.
		

Crossrefs

Subsequence of A000217.

Programs

  • Mathematica
    CoefficientList[Series[(-15 x (x^2 + 6 x + 1))/((x - 1) (x^2 - 18 x + 1) (x^2 + 18 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 21 2021 *)

Formula

a(n) = 5*A077260(n).
G.f.: (-15*x*(x^2+6*x+1))/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = 322*a(n-2) - a(n-4) + 120. - Vladimir Pletser, Feb 09 2021
E.g.f.: (-6*cosh(x) - (-3 + sqrt(5))*cosh((9 - 4*sqrt(5))*x) + (3 + sqrt(5))*cosh((9 + 4*sqrt(5))*x) - 6*sinh(x) + (7 - 3*sqrt(5))*sinh((9 - 4*sqrt(5))*x) + (7 + 3*sqrt(5))*sinh((9 + 4*sqrt(5))*x))/16. - Stefano Spezia, Aug 15 2024

A336624 Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number.

Original entry on oeis.org

0, 15, 66, 17391, 76245, 20069280, 87986745, 23159931810, 101536627566, 26726541239541, 117173180224500, 30842405430498585, 135217748442445515, 35592109140254127630, 156041164529401899891, 41073263105447832786516, 180071368649181350028780, 47398510031577658781511915
Offset: 0

Views

Author

Vladimir Pletser, Aug 07 2020

Keywords

Comments

The triangular numbers T(t) that are one-eighth of other triangular numbers T(u) : T(t)=T(u)/8. The t's are in A336623, the T(u)'s are in A336626 and the u's are in A336625.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular.
a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66;
a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
  • Mathematica
    LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *)
    FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *)
    Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020

Formula

a(n) = 1154*a(n-2) - a(n-4) + 81, for n>=2 with a(1)=15, a(0)=0, a(-1)=0, a(-2)=15.
a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(2)=66, a(1)=15, a(0)=0, a(-1)=0, a(-2)=15.
a(n) = b(n)*(b(n)+1)/2 where b(n) is A336623(n).
G.f.: 3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((sqrt(2) + 1)^(4*n + 2) * (11 - 6*(-1)^n*sqrt(2)) + (sqrt(2) - 1)^(4*n + 2) * (11 + 6*(-1)^n*sqrt(2)) - 18)/256. - Vaclav Kotesovec, Sep 08 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((11 - 6*sqrt(2))*(1 + sqrt(2))^(4n + 2) + (11 + 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for even n.
a(n) = ((11 + 6*sqrt(2))*(1 + sqrt(2) )^(4n + 2) + (11 - 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for odd n. (End)
128*a(n) = -9+33*A077420(n)-24*(-1)^n*A046176(n+1). - R. J. Mathar, May 05 2023

A336625 Indices of triangular numbers that are eight times other triangular numbers.

Original entry on oeis.org

0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1

Views

Author

Vladimir Pletser, Aug 13 2020

Keywords

Comments

Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 8*(b(n)^2 + b(n)) or T(a(n)) = 8*T(b(n)) where T(x) is the triangular number of x. The T(a)'s are in A336626, the T(b)'s are in A336624 and the b's are in A336623.
Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.

Examples

			a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
    FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020

Formula

a(n) = 34*a(n-2) - a(n-4) + 16, for n>=2 with a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=32, a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = (-1 + sqrt(8*b(n) + 1))/2, where b(n) is A336626(n).
G.f.: x^2*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 14 2020
a(n) = ((sqrt(2) + 1)^(2*n+1) * (3 - sqrt(2)*(-1)^n) - (sqrt(2) - 1)^(2*n+1) * (3 + sqrt(2)*(-1)^n) - 2)/4. - Vaclav Kotesovec, Sep 08 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((3 - sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 + sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for even n.
a(n) = ((3 + sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 - sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for odd n. (End)

A336623 First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.

Original entry on oeis.org

0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0

Views

Author

Vladimir Pletser, Aug 07 2020

Keywords

Comments

The indices of triangular numbers that are one-eighth of other triangular numbers [m of T(m) such that T(m)=T(k)/8]. The T(m)'s are in A336624, the T(k)'s are in A336626 and the k's are in A336625.
Also, nonnegative m such that 32*m^2 + 32*m + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0,  a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
    FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020

Formula

a(n) = 34 a(n-2) - a(n-4) + 16 for n>=2, with a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = a(n-1) + 34 a(n-2) - 34 a(n-3) - a(n-4)+ a(n-5) for n>=3 with a(2)=11, a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = (C+((-1)^n)*D)*A^n + (E+((-1)^n)*F)*B^n -1/2 with A = (sqrt(2) + 1)^2 ; B = (sqrt(2) - 1)^2 ; C = 3*(2 + sqrt(2))/16 ; D = -(1 + sqrt(2))/8 ; E = 3*(2 - sqrt(2))/16 ; F = (sqrt(2) - 1)/8 and n>=0.
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A336624(n).
G.f.: x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((3*sqrt(2) - 2*(-1)^n) * (1 + sqrt(2))^(2*n + 1) + (3*sqrt(2) + 2*(-1)^n) * (sqrt(2) - 1)^(2*n + 1) - 8)/16. - Vaclav Kotesovec, Sep 08 2020
Comment from _Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((4 + sqrt(2))(1 + sqrt(2))^(2n) + (4 - sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for even n.
a(n) = ((8 + 5 sqrt(2))(1 + sqrt(2))^(2n) + (8 - 5 sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for odd n. (End)

A336626 Triangular numbers that are eight times another triangular number.

Original entry on oeis.org

0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1

Views

Author

Vladimir Pletser, Oct 04 2020

Keywords

Comments

The triangular numbers T(t) that are eight times another triangular number T(u) : T(t) = 8*T(u). The t's are in A336625, the T(u)'s are in A336624 and the u's are in A336623.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n   [A336623, A336624,        A336625,  A336626        ]
[0] [0,       0,              0,        0              ]
[1] [5,       15,             15,       120            ]
[2] [11,      66,             32,       528            ]
[3] [186,     17391,          527,      139128         ]
[4] [390,     76245,          1104,     609960         ]
[5] [6335,    20069280,       17919,    160554240      ]
[6] [13265,   87986745,       37520,    703893960      ]
[7] [215220,  23159931810,    608735,   185279454480   ]
[8] [450636,  101536627566,   1274592,  812293020528   ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
		

Crossrefs

Programs

  • Julia
    function omnibus()
        println("[A336623, A336624, A336625, A336626]")
        println([0, 0, 0, 0])
        t, h = 1, 1
        for n in 1:999999999
            d, r = divrem(t, 8)
            if r == 0
                d2 = 2*d
                s = isqrt(d2)
                d2 == s * (s + 1) && println([s, d, n, t])
            end
            t, h = t + h + 1, h + 1
        end
    end
    omnibus() # Peter Luschny, Oct 19 2020
  • Maple
    f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
  • Mathematica
    LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]

Formula

a(n) = 8*A336624(n).
a(n) = 1154*a(n-2) - a(n-4) + 648, for n>=2 with a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=528, a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = ((10*sqrt(2))/17 + 15/17)*(17 + 12*sqrt(2))^n + (-(10*sqrt(2))/17 + 15/17)*(17 - 12*sqrt(2))^n + (-15/17 - (45*sqrt(2))/68)*(-17 - 12*sqrt(2))^n + (-15/17 + (45*sqrt(2))/68)*(-17 + 12*sqrt(2))^n - 27*(-4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 + 12*sqrt(2)))^n/(1088*(-17 + 12*sqrt(2))) - 27*(4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 - 12*sqrt(2)))^n/(1088*(-17 - 12*sqrt(2))) - 9/16 - 9*(-3 + 2*sqrt(2))*sqrt(2)*(-1/(17 - 12*sqrt(2)))^n/(272*(17 - 12*sqrt(2))) - 9*(3 + 2*sqrt(2))*sqrt(2)*(-1/(17 + 12*sqrt(2)))^n/(272*(17 + 12*sqrt(2))).
Let b(n) be A336625(n). Then a(n) = b(n)*(b(n)+1)/2.
G.f.: 24*x^2*(5 + 17*x + 5*x^2)/(1 - x - 1154*x^2 + 1154*x^3 + x^4 - x^5). - Stefano Spezia, Oct 05 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((11*(1 + sqrt(2))^2 - (-1)^n*6*(4 + 3*sqrt(2)))*(1 + sqrt(2))^(4n) + (11*(1 - sqrt(2))^2 - (-1)^n*6*(4 - 3*sqrt(2)))*(1 - sqrt(2))^(4n))/32 - 9/16.
a(n) = ((1 + 2*sqrt(2))^2*(1 + sqrt(2))^(4n) + (1 - 2*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for even n.
a(n) = ((5 + 4*sqrt(2))^2*(1 + sqrt(2))^(4n) + (5 - 4*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for odd n. (End)

A341895 Indices of triangular numbers that are ten times other triangular numbers.

Original entry on oeis.org

0, 4, 20, 39, 175, 779, 1500, 6664, 29600, 56979, 253075, 1124039, 2163720, 9610204, 42683900, 82164399, 364934695, 1620864179, 3120083460, 13857908224, 61550154920, 118481007099, 526235577835, 2337285022799, 4499158186320, 19983094049524, 88755280711460, 170849530073079, 758831338304095, 3370363382012699
Offset: 1

Views

Author

Vladimir Pletser, Feb 23 2021

Keywords

Comments

Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 10*(b(n)^2 + b(n)) or T(a(n)) = 10*T(b(n)) where T(x) is the triangular number of x. The T(b)'s are in A068085 and the b's are in A341893.
Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.

Examples

			a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
  • Mathematica
    Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* Michael De Vlieger, May 19 2022 *)

Formula

a(n) = 38*a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
G.f.: x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7). - Stefano Spezia, Feb 24 2021
a(n) = (A198943(n) + 1)/2 - 1. - Hugo Pfoertner, Feb 26 2021

A068085 Numbers k such that k and 10*k are both triangular numbers.

Original entry on oeis.org

0, 1, 21, 78, 1540, 30381, 112575, 2220778, 43809480, 162333171, 3202360435, 63173239878, 234084320106, 4617801526591, 91095768094695, 337549427259780, 6658866598983886, 131360034419310411, 486746040024282753, 9602081017933237120, 189421078536877518066, 701887452165588470145
Offset: 1

Views

Author

Amarnath Murthy, Feb 18 2002

Keywords

Comments

Let y=sqrt(8*k+1) and x=sqrt(80*k+1), which must be integers if k and 10*k are triangular. These quantities satisfy the Pell-like equation x^2 - 10*y^2 = -9. All solutions x+y*sqrt(10) are obtained from 1+sqrt(10), 9+3*sqrt(10) and 41+13*sqrt(10) by multiplying by powers of the fundamental unit 19+6*sqrt(10).
Conjecture: satisfies a linear recurrence having signature (1, 0, 1442, -1442, 0, -1, 1). - Harvey P. Dale, Sep 03 2020
This conjecture is true because of the connection between (generalized) Pell equations and continued fractions of quadratic irrationals. - Georg Fischer, Feb 23 2021
From Vladimir Pletser, Feb 26 2021: (Start)
The triangular numbers T(t) that are one-tenth of other triangular numbers T(u) : T(t)=T(u)/10. The t's are in A341893, and the u's are in A341895.
Can be defined for negative n by setting a(n) = a(1-n) for all n in Z. (End)

Examples

			21 and 210 are both triangular numbers.
		

Crossrefs

Cf. for k and m*k both triangular: A075528 (m=2), A076139 (m=3), 0 (m=4), A077260 (m=5), A077289 (m=6), A077399 (m=7), A336624 (m=8), 0 (m=9), this sequence (m=10).

Programs

  • Maple
    f := gfun:-rectoproc({a(-3) = 21, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 21, a(n) = 1442*a(n-3)-a(n-6)+99}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ; # Vladimir Pletser, Feb 26 2021
  • Mathematica
    a[0]=0; a[1]=1; a[2]=21; a[n_] := a[n]=(99+1442a[n-3]+57Sqrt[(1+8a[n-3])(1+80a[n-3])])/2

Formula

a(n) = (99 + 1442*a(n-3) + 57*sqrt((1 + 8*a(n-3))*(1 + 88*a(n-3))))/2.
G.f.: -x^2*(x^4+20*x^3+57*x^2+20*x+1) / ((x-1)*(x^6-1442*x^3+1)). - Colin Barker, Jun 24 2014
From _Vladimir Pletser, Feb 26 2021: (Start)
a(n) = 1442 *a(n-3) - a(n-6) + 99, for n > 3, with a(-2) = 21, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 21.
a(n) = a(n - 1) + 1442 ( a(n - 3) - a(n - 4) ) - ( a(n - 6) - a(n - 7) ) for n >= 4 with a(-2) = 21, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 21.
a(n) = b(n)*(b(n)+1)/2 where b(n) is A341893(n). (End)

Extensions

Edited by Dean Hickerson, Feb 20 2002
More terms from Georg Fischer, Feb 23 2021

A341893 Indices of triangular numbers that are one-tenth of other triangular numbers.

Original entry on oeis.org

0, 1, 6, 12, 55, 246, 474, 2107, 9360, 18018, 80029, 355452, 684228, 3039013, 13497834, 25982664, 115402483, 512562258, 986657022, 4382255359, 19463867988, 37466984190, 166410301177, 739114421304, 1422758742216, 6319209189385, 28066884141582, 54027365220036, 239963538895471, 1065802482958830, 2051617119619170
Offset: 1

Views

Author

Vladimir Pletser, Feb 23 2021

Keywords

Comments

The indices of triangular numbers that are one-tenth of other triangular numbers [t of T(t) such that T(t)=T(u)/10].
First member of the Diophantine pair (t, u) that satisfies 10*(t^2 + t) = u^2 + u; a(n) = t.
The T(t)'s are in A068085 and the u's are in A341895.
Also, nonnegative t such that 40*t^2 + 40*t + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(4) = 12 is a term because its triangular number, (12*13) / 2 = 78 is one-tenth of 780, the triangular number of 39.
a(4) = 38 a(1) - a(-2) +18 = 0 - 6 +18 = 12 ;
a(5) = 38 a(2) - a(-1) + 18 = 38*1 - 1 +18 = 55.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-3) = 6, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 6, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ;
  • Mathematica
    Rest@ CoefficientList[Series[(x^2*(1 + 5*x + 6*x^2 + 5*x^3 + x^4))/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 31}], x] (* Michael De Vlieger, May 19 2022 *)

Formula

a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A068085(n).
a(n) = 38 a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
G.f.: x^2*(1 + 4*x+x^2)*(1+x+x^2)/ ((1-x)*(1-38*x^3+x^6)). - Stefano Spezia, Feb 24 2021
a(n) = A180003(n) - 1. - Hugo Pfoertner, Feb 28 2021
Showing 1-10 of 11 results. Next