A053141
a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).
Original entry on oeis.org
0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- A. Behera and G. K. Panda, On the Square Roots of Triangular Numbers, Fib. Quart., 37 (1999), pp. 98-105.
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Q., Vol. 45, No. 3 (2007), 265-271. See p. 266.
- Michael Penn, (co) balancing numbers, YouTube video, 2022.
- Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Burkard Polster, Nice merging together, Mathologer video (2015).
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
-
a053141 n = a053141_list !! n
a053141_list = 0 : 2 : map (+ 2)
(zipWith (-) (map (* 6) (tail a053141_list)) a053141_list)
-- Reinhard Zumkeller, Jan 10 2012
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
A053141 := proc(n)
option remember;
if n <= 1 then
op(n+1,[0,2]) ;
else
6*procname(n-1)-procname(n-2)+2 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
-
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *)
Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
-
{x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)};
a(n) = round((P(2*n+1) - 1)/2);
for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
-
[(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020
A077260
Triangular numbers that are 1/5 of a triangular number.
Original entry on oeis.org
0, 3, 21, 990, 6786, 318801, 2185095, 102652956, 703593828, 33053933055, 226555027545, 10643263790778, 72950015275686, 3427097886697485, 23489678363743371, 1103514876252799416, 7563603483110089800, 355328363055514714491, 2435456831883085172253, 114414629388999485266710
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
Since b(3)=44 -> a(3)=44*45/2=990.
- Colin Barker, Table of n, a(n) for n = 0..798
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,322,-322,-1,1).
-
CoefficientList[Series[(-3 x (x^2 + 6 x + 1))/((x - 1) (x^2 - 18 x + 1)*(x^2 + 18 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 21 2021 *)
LinearRecurrence[{1,322,-322,-1,1},{0,3,21,990,6786},20] (* Harvey P. Dale, Dec 12 2023 *)
-
concat(0, Vec(-3*x*(x^2+6*x+1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
A077262
Second member of the Diophantine pair (m,k) that satisfies 5*(m^2 + m) = k^2 + k; a(n) = k.
Original entry on oeis.org
0, 5, 14, 99, 260, 1785, 4674, 32039, 83880, 574925, 1505174, 10316619, 27009260, 185124225, 484661514, 3321919439, 8696898000, 59609425685, 156059502494, 1069647742899, 2800374146900, 19194049946505, 50250675141714, 344423251294199, 901711778403960
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
a(3) = (-1 + sqrt(8*4950 + 1))/2 = (-1 + sqrt(39601))/2 = (199 - 1)/2 = 99.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,18,-18,-1,1).
-
f := gfun:-rectoproc({a(-2) = -6, a(-1) = -1, a(0) = 0, a(1) = 5, a(n) = 18*a(n - 2) - a(n - 4) + 8}, a(n), remember); map(f, [$ (0 .. 40)])[]; #Vladimir Pletser, Jul 26 2020
-
CoefficientList[Series[(x (x^3 + 5 x^2 - 9 x - 5))/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Apr 21 2021 *)
-
concat(0, Vec(x*(x^3+5*x^2-9*x-5)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^100))) \\ Colin Barker, May 15 2015
A077261
Triangular numbers that are 5 times another triangular number.
Original entry on oeis.org
0, 15, 105, 4950, 33930, 1594005, 10925475, 513264780, 3517969140, 165269665275, 1132775137725, 53216318953890, 364750076378430, 17135489433487425, 117448391818716855, 5517574381263997080, 37818017415550449000, 1776641815277573572455, 12177284159415425861265
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
- Colin Barker, Table of n, a(n) for n = 0..797
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,322,-322,-1,1).
-
CoefficientList[Series[(-15 x (x^2 + 6 x + 1))/((x - 1) (x^2 - 18 x + 1) (x^2 + 18 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 21 2021 *)
A110679
a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 1, a(1) = 2, a(2) = 11.
Original entry on oeis.org
1, 2, 11, 44, 189, 798, 3383, 14328, 60697, 257114, 1089155, 4613732, 19544085, 82790070, 350704367, 1485607536, 6293134513, 26658145586, 112925716859, 478361013020, 2026369768941, 8583840088782, 36361730124071, 154030760585064, 652484772464329
Offset: 0
-
[(Fibonacci(3*n+2) +(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Apr 19 2019
-
seriestolist(series((-1+x)/((x+1)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -1jesseq[A*B*cyc(A)] with A = - 'j + 'k - 'ii' - 'ij' - 'ik' and B = - .5'i - .5i' - .5'ii' + .5'jj' - .5'kk' + .5'jk' + .5'kj' - .5e
-
a[n_] := (Fibonacci[3*n+2] + (-1)^n)/2; a /@ Range[0, 22] (* Giovanni Resta, Mar 21 2017 *)
-
Vec((1 - x) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, Mar 21 2017
-
{a(n) = -(-1)^n * (fibonacci(-2 - 3*n)\2)}; /* Michael Somos, Mar 26 2017 */
-
[(fibonacci(3*n+2) +(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
A049651
a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
Original entry on oeis.org
0, 1, 6, 27, 116, 493, 2090, 8855, 37512, 158905, 673134, 2851443, 12078908, 51167077, 216747218, 918155951, 3889371024, 16475640049, 69791931222, 295643364939, 1252365390980, 5305104928861, 22472785106426, 95196245354567, 403257766524696, 1708227311453353, 7236167012338110
Offset: 0
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 24.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hans Koch, Golden mean renormalization for the almost Mathieu operator and related skew products, arXiv:1907.06804 [math-ph], 2019.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Hermann Stamm-Wilbrandt, 6 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
-
[(Fibonacci(3*n+1) - 1)/2: n in [0..30]]; // G. C. Greubel, Dec 05 2017
-
(Fibonacci[Range[1,5!,3]]-1)/2 (* Vladimir Joseph Stephan Orlovsky, May 18 2010 *)
LinearRecurrence[{5, -3, -1}, {0, 1, 6}, 50] (* G. C. Greubel, Dec 05 2017 *)
-
vector(30,n,n--;(fibonacci(3*n+1) -1)/2) \\ G. C. Greubel, Dec 05 2017
-
[(fibonacci(3*n+1)-1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
A336624
Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number.
Original entry on oeis.org
0, 15, 66, 17391, 76245, 20069280, 87986745, 23159931810, 101536627566, 26726541239541, 117173180224500, 30842405430498585, 135217748442445515, 35592109140254127630, 156041164529401899891, 41073263105447832786516, 180071368649181350028780, 47398510031577658781511915
Offset: 0
a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular.
a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66;
a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..650
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400.
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *)
Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
-
concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020
A336625
Indices of triangular numbers that are eight times other triangular numbers.
Original entry on oeis.org
0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1
a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020
A336623
First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.
Original entry on oeis.org
0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0
a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289 ,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0, a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020
A336626
Triangular numbers that are eight times another triangular number.
Original entry on oeis.org
0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1
a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n [A336623, A336624, A336625, A336626 ]
[0] [0, 0, 0, 0 ]
[1] [5, 15, 15, 120 ]
[2] [11, 66, 32, 528 ]
[3] [186, 17391, 527, 139128 ]
[4] [390, 76245, 1104, 609960 ]
[5] [6335, 20069280, 17919, 160554240 ]
[6] [13265, 87986745, 37520, 703893960 ]
[7] [215220, 23159931810, 608735, 185279454480 ]
[8] [450636, 101536627566, 1274592, 812293020528 ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
- Vladimir Pletser, Table of n, a(n) for n = 1..653
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077260,
A077261,
A077262,
A077288,
A077289,
A077290,
A077291,
A077398,
A077399,
A077400,
A077401.
-
function omnibus()
println("[A336623, A336624, A336625, A336626]")
println([0, 0, 0, 0])
t, h = 1, 1
for n in 1:999999999
d, r = divrem(t, 8)
if r == 0
d2 = 2*d
s = isqrt(d2)
d2 == s * (s + 1) && println([s, d, n, t])
end
t, h = t + h + 1, h + 1
end
end
omnibus() # Peter Luschny, Oct 19 2020
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]
Showing 1-10 of 17 results.
Comments