cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A165327 E.g.f: Sum_{n>=0} 2^(n(n-1)) * exp(2^n*x) * x^n/n!.

Original entry on oeis.org

1, 2, 9, 125, 6561, 1419857, 1291467969, 4902227890625, 76686282021340161, 4891005035897482905857, 1262332172765951010966606849, 1312086657801266767978668212890625
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2009

Keywords

Comments

More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n/n! = Sum_{n>=0} (m*q^n + b)^n * x^n/n! for all q, m, b.

Examples

			E.g.f: A(x) = 1 + 2*x + 3^2*x^2/2! + 5^3*x^3/3! + 9^4*x^4/4! +...
A(x) = exp(x) + exp(2x)*x + 2^2*exp(4x)*x^2/2! + 2^6*exp(8x)*x^3/3! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log(F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1/2, b=1.
		

Crossrefs

Cf. variants: A136516, A055601, A079491.

Programs

  • PARI
    {a(n,q=2,m=1/2,b=1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}

Formula

a(n) = (2^(n-1) + 1)^n.

A339832 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

1, 2, 5, 14, 50, 230, 1543, 16252, 294007, 9598984, 577914329, 64384617634, 13264949930889, 5055918209734322, 3572106887472105263, 4692016570446185240464, 11496632576435936553085113, 52730955262459923752850296554, 454273406825238417871411598421653
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form an independent vertex set. For n > 0, a(n) is then the total number of indistinguishable independent vertex sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A079491 (labeled case), A339830 (trees), A339836, A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    U(nb,nw)={my(s=0); forpart(v=nw, my(t=0); forpart(u=nb, t += permcount(u) * 2^cross(u,v)); s += t*permcount(v) * 2^edges(v)/nb!); s/nw!}
    a(n) = {sum(k=0, n, U(k, n-k))}

A180602 a(n) = (2^(n+1) - 1)^n.

Original entry on oeis.org

1, 3, 49, 3375, 923521, 992436543, 4195872914689, 70110209207109375, 4649081944211090042881, 1227102111503512992112190463, 1291749870339606615892191271170049, 5429914198235566686555216227881787109375
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2010

Keywords

Comments

More generally, we have the following identities:
(1) Sum_{n>=0} m^n* F(q^n*x)^b* log( F(q^n*x) )^n/n! = Sum_{n>=0} x^n* [y^n] F(y)^(m*q^n + b);
(2) Sum_{n>=0} m^n* q^(n^2)* exp(b*q^n*x)*x^n/n! = Sum_{n>=0} (m*q^n + b)^n*x^n/n! for all q, m, b.
This sequence results from (2) when q=2, m=2, b=-1.
For n >= 2, a(n) is the first number in a set of three powerful numbers in arithmetic progression with difference a(n)*(2^n - 1). - Arkadiusz Wesolowski, Aug 26 2013

Examples

			E.g.f: A(x) = 1 + 3*x + 7^2*x^2/2! + 15^3*x^3/3! + 31^4*x^4/4! +...
A(x) = exp(-x) + 2^2*exp(-2*x)*x + 2^6*exp(-4*x)*x^2/2! + 2^12*exp(-8*x)*x^3/3! +...
		

Crossrefs

Cf. A086459 (signed, offset 1), variants: A055601, A079491, A136516, A165327.
Cf. A001694.

Programs

  • Magma
    [(2^(n+1)-1)^n : n in [0..11]]; // Arkadiusz Wesolowski, Aug 26 2013
    
  • Maple
    A180602:=n->(2^(n+1) - 1)^n: seq(A180602(n), n=0..10); # Wesley Ivan Hurt, Oct 09 2014
  • Mathematica
    Table[(2^(n + 1) - 1)^n, {n, 0, 10}] (* Wesley Ivan Hurt, Oct 09 2014 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2+k)*exp(-2^k*x+x*O(x^n))*x^k/k!), n)}
    
  • Python
    def A180602(n): return ((1<Chai Wah Wu, Sep 13 2024

Formula

E.g.f.: Sum_{n>=0} 2^(n^2+n) * exp(-2^n*x) * x^n/n!.

Extensions

Name changed by Arkadiusz Wesolowski, Aug 26 2013

A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Examples

			Triangle begins:
     1
     0     1
     0     2     1
     1     9     9     1
    15    80    90    24     1
   252  1050  1200   450    50     1
  5005 18018 20475  9100  1575    90     1
The loop-graphs counted in row n = 3 (loops shown as singletons):
  {12}{13}{23}  {1}{12}{13}  {1}{2}{12}  {1}{2}{3}
                {1}{12}{23}  {1}{2}{13}
                {1}{13}{23}  {1}{2}{23}
                {2}{12}{13}  {1}{3}{12}
                {2}{12}{23}  {1}{3}{13}
                {2}{13}{23}  {1}{3}{23}
                {3}{12}{13}  {2}{3}{12}
                {3}{12}{23}  {2}{3}{13}
                {3}{13}{23}  {2}{3}{23}
		

Crossrefs

Row sums are A014068, unlabeled version A000666.
Column k = 0 is A116508, covering version A367863.
The covering case is A368597.
The unlabeled version is A368836.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
    T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024

Formula

T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).

A079492 Nearest integer to Sum_{k=0..n} binomial(n,k)/2^(k*(k-1)/2).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 17, 23, 31, 41, 52, 66, 82, 101, 124, 150, 180, 215, 254, 299, 351, 408, 473, 546, 628, 719, 820, 932, 1055, 1192, 1342, 1508, 1689, 1887, 2104, 2340, 2597, 2876, 3179, 3507, 3863, 4247, 4662, 5108, 5590, 6107, 6663, 7259, 7899, 8583, 9316, 10099
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2003

Keywords

Examples

			1, 2, 7/2, 45/8, 545/64, 12625/1024, 564929/32768, 49162689/2097152, ...
		

References

  • D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press, 1999, p. 113.

Crossrefs

Cf. A079491.

Programs

  • Magma
    [Round( (&+[Binomial(n,k)/2^(k*(k-1)/2): k in [0..n]]) ): n in [0..60]]; // G. C. Greubel, Jan 18 2019
    
  • Maple
    f := n->add(binomial(n,k)/2^(k*(k-1)/2),k=0..n);
  • Mathematica
    Table[Round[Sum[Binomial[n,k]/2^(k*(k-1)/2), {k,0,n}]], {n,0,60}] (* G. C. Greubel, Jan 18 2019 *)
  • PARI
    vector(60, n, n--; round(sum(k=0,n, binomial(n,k)/2^(k*(k-1)/2)))) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    [round(sum(binomial(n,k)/2^(k*(k-1)/2) for k in (0..30))) for n in (0..60)] # G. C. Greubel, Jan 18 2019

A277219 Triangle read by rows: T(n,k) is the number of independent sets of size k over all simple labeled graphs on n nodes, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 8, 24, 12, 1, 64, 256, 192, 32, 1, 1024, 5120, 5120, 1280, 80, 1, 32768, 196608, 245760, 81920, 7680, 192, 1, 2097152, 14680064, 22020096, 9175040, 1146880, 43008, 448, 1, 268435456, 2147483648, 3758096384, 1879048192, 293601280, 14680064, 229376, 1024, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 05 2016

Keywords

Comments

Equivalently, T(n,k) is the number of size k cliques over all simple labeled graphs on n vertices.

Examples

			Triangle begins:
1;
1,     1;
2,     4,      1;
8,     24,     12,     1;
64,    256,    192,    32,    1;
1024,  5120,   5120,   1280,  80,   1;
32768, 196608, 245760, 81920, 7680, 192, 1;
...
		

Crossrefs

Cf. A079491 (row sums), A006125 (column k=0), A095340 (column k=1), A095351 (column k = 2).

Programs

  • Maple
    seq(seq(2^(n*(n-1)/2-k*(k-1)/2)*binomial(n,k),k=0..n),n=0..10); # Robert Israel, Oct 06 2016
  • Mathematica
    Table[Table[2^Binomial[n, 2] Binomial[n, k]/2^Binomial[k, 2], {k, 0, n}], {n,0, 7}] // Grid

Formula

T(n,k) = 2^binomial(n,2)*binomial(n,k)/2^binomial(k,2).

A370165 Number of labeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.

Original entry on oeis.org

1, 1, 4, 29, 400, 10289, 496548, 45455677, 7983420736, 2716094133313, 1803251169342820, 2348787270663723581, 6024912118926389490448, 30516957491540079828757553, 305811332460677494410532494660, 6071677788061208810793717466942237
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2024

Keywords

Comments

Number of ways to choose a stable vertex set of a simple graph with n vertices.

Examples

			The a(3) = 29 loop-graphs (loops shown as singletons):
  {1,23}   {1,2,3}     {1,2,13,23}
  {2,13}   {1,2,13}    {1,3,12,23}
  {3,12}   {1,2,23}    {2,3,12,13}
  {12,13}  {1,3,12}    {1,12,13,23}
  {12,23}  {1,3,23}    {2,12,13,23}
  {13,23}  {2,3,12}    {3,12,13,23}
           {2,3,13}
           {1,12,13}
           {1,12,23}
           {1,13,23}
           {2,12,13}
           {2,12,23}
           {2,13,23}
           {3,12,13}
           {3,12,23}
           {3,13,23}
           {12,13,23}
		

Crossrefs

Without loops we have A006129, connected A001187.
The non-covering version is A079491.
The unlabeled version is A370166, non-covering A339832.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts labeled loop-graphs (shifted left), covering A322661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&!MatchQ[#, {_,{x_},_,{y_},_,{x_,y_},_}]&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, exp((2^k-1)*x + O(x*x^n))*2^(k*(k-1)/2)*x^k/k!)))} \\ Andrew Howroyd, Feb 20 2024

Formula

Inverse binomial transform of A079491.
E.g.f.: Sum_{k >= 0} exp((2^k-1)*x)*2^(k*(k-1)/2)*x^k/k!. - Andrew Howroyd, Feb 20 2024

A370166 Number of unlabeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.

Original entry on oeis.org

1, 1, 3, 9, 36, 180, 1313, 14709, 277755, 9304977, 568315345, 63806703305, 13200565313255, 5042653259803433, 3567050969262370941, 4688444463558713135201, 11491940559865490367844649, 52719458629883487816297211441, 454220675869975957947658748125099
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2024

Keywords

Examples

			Representatives of the a(0) = 1 through a(3) = 9 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{1,2},{1,3}}
             {{1},{1,2}}  {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
                          {{1},{2},{1,3},{2,3}}
                          {{1},{1,2},{1,3},{2,3}}
		

Crossrefs

Without loops we have A002494, labeled A006129, connected A001349.
The non-covering version is A339832.
The labeled version is A370165, non-covering A079491 (apparently).
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts labeled loop-graphs (shifted left), covering A322661.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n] && !MatchQ[#,{_,{x_},_,{y_},_,{x_,y_},_}]&]]], {n,0,4}]

Formula

First differences of A339832 (the non-covering version).
Showing 1-8 of 8 results.