cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A005277 Nontotients: even numbers k such that phi(m) = k has no solution.

Original entry on oeis.org

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302, 304, 308, 314, 318
Offset: 1

Views

Author

Keywords

Comments

If p is prime then the following two statements are true. I. 2p is in the sequence iff 2p+1 is composite (p is not a Sophie Germain prime). II. 4p is in the sequence iff 2p+1 and 4p+1 are composite. - Farideh Firoozbakht, Dec 30 2005
Another subset of nontotients consists of the numbers j^2 + 1 such that j^2 + 2 is composite. These numbers j are given in A106571. Similarly, let b be 3 or a number such that b == 1 (mod 4). For any j > 0 such that b^j + 2 is composite, b^j + 1 is a nontotient. - T. D. Noe, Sep 13 2007
The Firoozbakht comment can be generalized: Observe that if k is a nontotient and 2k+1 is composite, then 2k is also a nontotient. See A057192 and A076336 for a connection to Sierpiński numbers. This shows that 271129*2^j is a nontotient for all j > 0. - T. D. Noe, Sep 13 2007

Examples

			There are no values of m such that phi(m)=14, so 14 is a term of the sequence.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 44 at p. 91.
  • R. K. Guy, Unsolved Problems in Number Theory, B36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 91.

Crossrefs

See A007617 for all numbers k (odd or even) such that phi(m) = k has no solution.
All even numbers not in A002202. Cf. A000010.

Programs

  • Haskell
    a005277 n = a005277_list !! (n-1)
    a005277_list = filter even a007617_list
    -- Reinhard Zumkeller, Nov 22 2015
    
  • Magma
    [n: n in [2..400 by 2] | #EulerPhiInverse(n) eq 0]; // Marius A. Burtea, Sep 08 2019
  • Maple
    A005277 := n -> if type(n,even) and invphi(n)=[] then n fi: seq(A005277(i),i=1..318); # Peter Luschny, Jun 26 2011
  • Mathematica
    searchMax = 320; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; Select[Range[searchMax], EvenQ[ # ] && (phiAnsYldList[[ # ]] == 0) &] (* Alonso del Arte, Sep 07 2004 *)
    totientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) Select[2 Range@160, ! totientQ@# &] (* Robert G. Wilson v, Mar 20 2023 *)
  • PARI
    is(n)=n%2==0 && !istotient(n) \\ Charles R Greathouse IV, Mar 04 2017
    

Formula

a(n) = 2*A079695(n). - R. J. Mathar, Sep 29 2021
{k: k even and A014197(k) = 0}. - R. J. Mathar, Sep 29 2021

Extensions

More terms from Jud McCranie, Oct 13 2000

A093819 Algebraic degree of sin(2*Pi/n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 2, 6, 4, 10, 1, 12, 6, 8, 4, 16, 6, 18, 2, 12, 10, 22, 4, 20, 12, 18, 3, 28, 8, 30, 8, 20, 16, 24, 3, 36, 18, 24, 8, 40, 12, 42, 5, 24, 22, 46, 8, 42, 20, 32, 6, 52, 18, 40, 12, 36, 28, 58, 4, 60, 30, 36, 16, 48, 20, 66, 8, 44, 24, 70, 12, 72, 36, 40, 9, 60, 24
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

The degree formula given in the I. Niven reference on p. 37-8 (see below) appears as part of theorem 3.9 attributed to D. H. Lehmer. However, this part, concerning sin(2*Pi/n), differs from Lehmer's result, which in fact is incorrect. - Wolfdieter Lang, Jan 09 2011
This is also the algebraic degree of the area of a regular n-gon inscribed in the unit circle. - Jack W Grahl, Jan 10 2011
Every degree appears in this sequence except for the half-nontotients, A079695. - T. D. Noe, Jan 12 2011
See A181872/A181873 for the monic rational minimal polynomial of sin(2*Pi/n), and A181871 for the non-monic integer version. In A231188 the (monic and integer) minimal polynomials for 2*sin(2*Pi/n) are given. - Wolfdieter Lang, Nov 30 2013

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Cf. A055035, A023022 (alg. degree of cos(2*Pi/n)), A183919.

Programs

  • Mathematica
    a[4]=1; a[n_] := Module[{g=GCD[n, 8], e=EulerPhi[n]}, If[g<4, e, If[g==4, e/4, e/2]]]; Array[a, 1000]
    f[n_] := Exponent[ MinimalPolynomial[ Sin[ 2Pi/n]][x], x]; Array[f, 75] (* Robert G. Wilson v, Jul 28 2014 *)

Formula

a(4)=1, a(n)=phi(n) if gcd(n,8)<4; a(n)=phi(n)/4 if gcd(n,8)=4, and a(n)=phi(n)/2 if gcd(n,8)>4. Here phi(n)=A000010(n) (Euler totient). See the I. Niven reference, Theorem 3.9, p. 37-8. - Wolfdieter Lang, Jan 09 2011
a(n) = delta(c(n)/2) if c(n) = A178182(n) is even, and delta(c(n)) if c(n) is odd, with delta(n) = A055034(n), the degree of the algebraic number 2*cos(Pi/n). - Wolfdieter Lang, Nov 30 2013

A032446 Number of solutions to phi(k) = 2n.

Original entry on oeis.org

3, 4, 4, 5, 2, 6, 0, 6, 4, 5, 2, 10, 0, 2, 2, 7, 0, 8, 0, 9, 4, 3, 2, 11, 0, 2, 2, 3, 2, 9, 0, 8, 2, 0, 2, 17, 0, 0, 2, 10, 2, 6, 0, 6, 0, 3, 0, 17, 0, 4, 2, 3, 2, 9, 2, 6, 0, 3, 0, 17, 0, 0, 2, 9, 2, 7, 0, 2, 2, 3, 0, 21, 0, 2, 2, 0, 0, 7, 0, 12, 4, 3, 2, 12, 0, 2, 0, 8, 2, 10
Offset: 1

Views

Author

Ursula Gagelmann (gagelmann(AT)altavista.net)

Keywords

Comments

By Carmichael's conjecture, a(n) <> 1 for any n. See A074987. - Thomas Ordowski, Sep 13 2017
a(n) = 0 iff n is a term of A079695. - Bernard Schott, Oct 02 2021

Examples

			If n = 8 then phi(x) = 2*8 = 16 is satisfied for only a(8) = 6 values of x, viz. 17, 32, 34, 40, 48, 60.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover Publications, Inc., NY, 1966, page 90.

Crossrefs

Bisection of A014197.
Cf. A006511 (largest k for which A000010(k) = A002202(n)), A057635.

Programs

  • Magma
    [#EulerPhiInverse( 2*n):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory); [ seq(nops(invphi(2*n)), n=1..90) ];
  • Mathematica
    t = Table[0, {100} ]; Do[a = EulerPhi[n]; If[a < 202, t[[a/2]]++ ], {n, 3, 10^5} ]; t
  • PARI
    a(n) = invphiNum(2*n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp

Extensions

Extended by Robin Trew (trew(AT)hcs.harvard.edu).

A002180 Values taken by the half-totient function phi(m)/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 35, 36, 39, 40, 41, 42, 44, 46, 48, 50, 51, 52, 53, 54, 55, 56, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 92
Offset: 2

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002202, A079695 (complementary sequence).

Programs

  • Haskell
    a002180 = flip div 2 . a002202  -- Reinhard Zumkeller, Nov 22 2015
    
  • Maple
    with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 2 to 300 do if t1[n] <> 0 then t2 := [op(t2), n/2]; fi; od: t2;
  • Mathematica
    phiQ[m_] := Select[Range[m+1, 2 m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; Select[Range[2, 200], phiQ]/2 (* Jean-François Alcover, Jun 13 2012, after Maxim Rytin *)
  • PARI
    list(lim)=my(v=List()); for(n=1,lim, if(istotient(2*n), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Feb 08 2017

Formula

a(n) = A002202(n)/2 for n > 1.

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001

A051445 Smallest k such that phi(k) = 2n, or 0 if there is no such k.

Original entry on oeis.org

3, 5, 7, 15, 11, 13, 0, 17, 19, 25, 23, 35, 0, 29, 31, 51, 0, 37, 0, 41, 43, 69, 47, 65, 0, 53, 81, 87, 59, 61, 0, 85, 67, 0, 71, 73, 0, 0, 79, 123, 83, 129, 0, 89, 0, 141, 0, 97, 0, 101, 103, 159, 107, 109, 121, 113, 0, 177, 0, 143, 0, 0, 127, 255, 131, 161, 0, 137
Offset: 1

Views

Author

Keywords

Comments

The zero values are easy to prove because of the bounds on the phi function.

Examples

			a(4) = 15 as phi(15) = 2*4 and no k < 15 has phi(k) = 2*4.
		

Crossrefs

Cf. A002181, A072075, A079695. For records see A132012, A132115.

Programs

  • PARI
    a(n)=n+=n;for(k=n+1, solve(x=n,if(n<20,99,5*n*log(log(n))), x/(exp(Euler)*log(log(x))+3/log(log(x)))-n), if(eulerphi(k)==n,return(k))); 0 \\ Charles R Greathouse IV, Dec 19 2011

Formula

a(10^n/2) = A072075(n). - R. J. Mathar, Dec 12 2024
a(A079695(n)) = 0. - David A. Corneth, Dec 12 2024

A306513 The number of unordered pairs of coprime integers q and r such that phi(q) + phi(r) = 2n.

Original entry on oeis.org

1, 1, 5, 7, 12, 10, 19, 18, 20, 21, 35, 32, 39, 42, 38, 37, 48, 46, 45, 58, 64, 63, 69, 73, 58, 93, 71, 70, 81, 92, 72, 113, 96, 94, 90, 100, 79, 158, 120, 95, 131, 153, 84, 147, 129, 132, 126, 150, 92, 179, 157, 150, 149, 187, 92, 224, 177, 166, 173, 207, 124
Offset: 1

Views

Author

Robert G. Wilson v, Feb 20 2019

Keywords

Comments

Paul Erdős and Leo Moser conjectured that, for any even number 2n, there exist integers q and r such that phi(q) + phi(r) = 2n with gcd(q, r) = 1. Adding to this conjecture the requirement that q and r be prime yields the Goldbach Conjecture. The replacement of the requirement that q and r be prime with the relaxed requirement that they be coprime was done in an effort to solve the Goldbach Conjecture.

Examples

			a(1) = 1 with {q, r} = {1,2};
a(2) = 1 with {q, r} = {3,4};
a(3) = 5 because phi(q) + phi(r) = 6 for the pairs {q, r} = {3,5}, {3,8}, {3,10}, {4,5} & {5,6}; etc.
		

References

  • George E. Andrews, Number Theory, Chapter 6, Arithmetic Functions, Section 6-1, Combinatorial Study of Phi(n), pp. 75-82, Dover Publishing, NY, 1971.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, q = 1}, While[q < 12n, epq = EulerPhi[q]; r = 12n + 125; While[r > q, If[ GCD[q, r] == 1 && epq + EulerPhi[r] == 2 n, c++]; r--]; q++]; c]; Array[f, 61]

A207333 Allowed values of degrees of minimal polynomials of 2*cos(Pi/N).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 33, 35, 36, 39, 27, 40, 41, 42, 44, 46, 48, 50, 51, 52, 53, 54, 56, 58, 55, 60, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 78, 81, 80, 82, 83, 84, 86, 88, 89, 90, 92, 95
Offset: 1

Views

Author

Wolfdieter Lang, Feb 19 2012

Keywords

Comments

The coefficients of the minimal polynomials C(N,x) of the algebraic number 2*cos(Pi/N) are given in A187360, where N is n.
The degree of C(N,x) is delta(N) = 1 if N=1 and delta(N) = phi(2*N)/2 if N > 1, with Euler's totient function phi(n) = A000010(n).
The forbidden degree values are shown in the complement (relative to the positive integers) A079695.
The array of the values N (the indices) for which the degree delta(N) = a(n), n >= 1, is given in A207334.

Examples

			a(8) = 9 because there is at least one polynomial C(N,x) with degree delta(N)=9. In fact the only N values are 19 and 27.
7 is no member of this sequence (it belongs to the complement A079695).
		

Crossrefs

Cf. A079695 (complement), A207334 (array of indices of C polynomials with degree a(n)).

Formula

a(n) gives the allowed degree values, called delta, of the minimal polynomials C ordered increasingly, For C and delta see the comment section.

A282160 Least k > 1 such that k*n is not a totient number.

Original entry on oeis.org

3, 7, 3, 17, 3, 15, 2, 19, 3, 5, 3, 43, 2, 7, 3, 19, 2, 5, 2, 17, 3, 7, 3, 167, 2, 7, 3, 11, 3, 3, 2, 19, 3, 2, 3, 67, 2, 2, 3, 17, 3, 17, 2, 7, 2, 5, 2, 211, 2, 7, 3, 7, 3, 11, 3, 13, 2, 3, 2, 139, 2, 2, 3, 31, 3, 9, 2, 5, 3, 5, 2, 109, 2, 5, 3, 2, 2, 3, 2, 85, 3, 3, 3, 61
Offset: 1

Views

Author

Altug Alkan, Feb 07 2017

Keywords

Comments

First occurrence of odd k or zero if impossible: 0, 1, 10, 2, 66, 28, 56, 6, 4, 8, 5244, 460, 272, 0, 232, 64, 7788, 4180, 300, 348, 328, 12, etc. - Robert G. Wilson v, Feb 09 2017

Examples

			a(14) = 7 because 7 * 14 = 98 is not a totient number and 7 is the least number that is greater than 1 with this property.
		

Crossrefs

Programs

  • Mathematica
    TotientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) f[n_] := Block[{k = 2}, While[ TotientQ[k*n], k++]; k]; Array[f, 84] (* Robert G. Wilson v, Feb 09 2017 *)
  • PARI
    a(n) = my(k = 2); while (istotient(k*n), k++); k;

Formula

a(A079695(n)) = 2. - Michel Marcus, Feb 08 2017

A328414 Numbers k such that (Z/mZ)* = C_2 X C_(2k) has no solutions m, where (Z/mZ)* is the multiplicative group of integers modulo m.

Original entry on oeis.org

7, 12, 13, 17, 19, 25, 28, 31, 34, 37, 38, 43, 47, 49, 52, 57, 59, 61, 62, 67, 71, 73, 76, 77, 79, 80, 84, 85, 91, 92, 93, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112, 117, 118, 121, 122, 124, 127, 129, 133, 137, 139, 142, 143, 144, 148, 149, 151, 152, 157, 160, 161, 163, 164
Offset: 1

Views

Author

Jianing Song, Oct 14 2019

Keywords

Comments

Indices of 0 in A328410, A328411 and A328412.
By definition, if there is no such m that psi(m) = 2k, psi = A002322, then m is a term of this sequence.

Examples

			12 is a term: if there exists m such that (Z/mZ)* = C_2 X C_24 = C_2 X C_8 X C_3, then m must have a factor q such that q is an odd prime power and phi(q) = 8 or phi(q) = 24, phi = A000010, which is impossible.
80 is a term: if there exists m such that (Z/mZ)* = C_2 X C_80 = C_2 X C_16 X C_5, then m must have a factor q such that q is an odd prime power and phi(q) = 80 or phi(q) = 16, which is impossible.
		

Crossrefs

Cf. A328410, A328411, A328412. Complement of A328413.

Programs

  • PARI
    isA328414(n) = my(r=4*n, N=floor(exp(Euler)*r*log(log(r^2))+2.5*r/log(log(r^2)))); for(k=r+1, N+1, if(eulerphi(k)==r && lcm(znstar(k)[2])==r/2, return(0)); if(k==N+1, return(1)))
    for(n=1, 200, if(isA328414(n), print1(n, ", ")))

A333819 a(n) is the least integer q > 0 such that for some integer r, phi(q) + phi(r) = 2*n; where phi(n) is Euler's totient function (A000010).

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 5, 3, 3, 5, 7, 3, 3, 3, 3, 5, 3, 5, 3, 5, 3, 5, 3, 3, 3, 3, 3, 3, 3, 5, 3, 5, 3, 5, 7, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 5, 7, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 5, 3, 5, 7, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3
Offset: 1

Views

Author

Robert G. Wilson v, Apr 06 2020

Keywords

Comments

Paul Erdös and Leo Moser conjectured that, for any even numbers 2*n, there exist integers q and r such that phi(q) + phi(r) = 2*n.
The only time phi is odd, it equals 1. Therefore, the only time that phi(q) + phi(r) = 2*n-1 (for n>0) has no solution is when 2*n-2 is a member of A005277 = 2*A079695.
The first occurrence of 2*k-1, or 0 if not possible, is k=1,2,3,...: 1, 2, 8, 39, 0, 124, 204, 208, 2024, 3473, 0, 2983, 2023, ..., .

References

  • George E. Andrews, Number Theory, Chapter 6, Arithmetic Functions, 6-1 Combinatorial Study of Phi(n) page 75-82, Dover Publishing, NY, 1971.
  • Daniel Zwillinger, Editor-in-Chief, CRC Standard Mathematical Tables and Formulae, 31st Edition, 2.4.15 Euler Totient pages 128-130, Chapman & Hall/CRC, Boca Raton, 2003.

Crossrefs

Programs

  • Mathematica
    mbr = Union@ Array[ EulerPhi@# &, 500]; a[n_] := Block[{q = 1}, While[ !MemberQ[mbr, 2n - EulerPhi@ q], q++]; q]; Array[a, 105]
Showing 1-10 of 12 results. Next