cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A122853 Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006

Keywords

Comments

(3^k + 5^k)/8 = A074606(k)/8 = A081186(k)/4.
Corresponding primes of the form (3^k + 5^k)/2^3 are listed in {A121938(n)} = {A079773(a(n))} = {19, 421, 10039, 95383574161, 2384331073699, ...}.
No other terms less than 100000. - Robert Price, Apr 28 2012

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
  • PARI
    select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011

Extensions

a(11)-a(15) from Robert Price, Apr 28 2012

A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).

Original entry on oeis.org

1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 05 2014

Keywords

Comments

Row sums are powers of 2.

Examples

			Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017

Formula

G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A080424 a(n) = 3*a(n-1) + 18*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 27, 135, 891, 5103, 31347, 185895, 1121931, 6711903, 40330467, 241805655, 1451365371, 8706597903, 52244370387, 313451873415, 1880754287211, 11284396583103, 67706766919107, 406239439253175, 2437440122303451, 14624630273467503, 87747813021864627, 526486783988008935
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Comments

The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. - Felix P. Muga II, Mar 10 2014

Crossrefs

Programs

Formula

G.f.: x/((1+3*x)*(1-6*x)).
a(n) = (6^n - (-3)^n)/9.
a(n+1) = 6*a(n) + (-3)^n. - Paul Curtz, Jun 07 2011
a(n) = 3^(n-1)*A001045(n). - R. J. Mathar, Mar 08 2021

A080920 a(n) = 2a(n-1) + 35a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 39, 148, 1661, 8502, 75139, 447848, 3525561, 22725802, 168846239, 1133095548, 8175809461, 56009963102, 398173257339, 2756695223248, 19449454453361, 135383241720402, 951497389308439, 6641408238830948
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 7^n/12 - (-5)^n/12.
a(n) = Sum{k=1..n, binomial(n, 2k-1)*6^(2(k-1))}.
G.f.: 1/((1+5x)(1-7x)).
a(n+1) = Sum_{k = 0..n} A238801(n,k)*6^k. - Philippe Deléham, Mar 07 2014

A080921 a(n) = 2*a(n-1) + 48*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Comments

Essentially the same as A053455: a(n) = A053455(n-1), n>=1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x / ((1 + 6 x) (1 - 8 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    LinearRecurrence[{2,48},{0,1},30] (* Harvey P. Dale, Jan 20 2016 *)

Formula

a(n) = (8^n - (-6)^n)/14.
a(n) = Sum{k=1..n, binomial(n, 2k-1) * 7^(2(k-1)) }
G.f.: x/((1+6*x)*(1-8*x)).
a(n) = A053455(n-1), n>=1. [R. J. Mathar, Sep 18 2008]

A121938 Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.

Original entry on oeis.org

19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Comments

Corresponding numbers k such that (3^k + 5^k)/8 is prime are listed in A122853. All these numbers are primes. - Alexander Adamchuk, Sep 14 2006
The next term is too large to include. - Alexander Adamchuk, Sep 14 2006

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)

Formula

a(n) = (A122853(n)^3 + A122853(n)^5)/8. a(n) = A074606[A122853(n)]/8 = A081186[A122853(n)]/4. a(n) = A079773[A122853(n)]. - Alexander Adamchuk, Sep 14 2006

Extensions

More terms from Alexander Adamchuk, Sep 14 2006

A292847 a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).

Original entry on oeis.org

5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Examples

			For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
		

Crossrefs

Programs

  • Mathematica
    g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]);
    Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
  • PARI
    g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1]
    a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025

Formula

When 2*n + 3 = p is prime, a(n) = p.

A383637 Expansion of 1/((1-x) * (1+3*x) * (1-5*x)).

Original entry on oeis.org

1, 3, 22, 90, 511, 2373, 12412, 60420, 307021, 1520343, 7646002, 38097150, 190884331, 953225913, 4769716792, 23837822280, 119221396441, 596010127083, 2980341200782, 14900834307810, 74506786627351, 372526087871853, 1862653975153972, 9313199268385740, 46566208164081061
Offset: 0

Views

Author

Seiichi Manyama, May 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (5^(n+2)+(-3)^(n+2)-2)/32;

Formula

a(n) = Sum_{k=0..floor(n/2)} 16^k * binomial(n+2,2*k+2).
a(n) = (5^(n+2) + (-3)^(n+2) - 2)/32 = (A120612(n+2) - 1)/16.
a(n) = 3*a(n-1) + 13*a(n-2) - 15*a(n-3).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2).
a(n) = Sum_{k=0..n} (-4)^k * 5^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2).
Showing 1-8 of 8 results.