A079935 a(n) = 4*a(n-1) - a(n-2) with a(1) = 1, a(2) = 3.
1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403
Offset: 1
Examples
a(4) = 41 since frac(1*x) + frac(3*x) + frac(11*x) + frac(41*x) < 1, while frac(1*x) + frac(3*x) + frac(11*x) + frac(k*x) > 1 for all k > 11 and k < 41.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Dalen Dockery, Marie Jameson, and Samuel Wilson, d-Fold Partition Diamonds, arXiv:2307.02579 [math.NT], 2023.
- Tanya Khovanova, Recursive Sequences
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), pp. 609-640.
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, Vol. 7, No. 5 (2011), pp. 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012), The John Selfridge Memorial Volume.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Crossrefs
Programs
-
Haskell
a079935 n = a079935_list !! (n-1) a079935_list = 1 : 3 : zipWith (-) (map (4 *) $ tail a079935_list) a079935_list -- Reinhard Zumkeller, Aug 14 2011
-
Magma
I:=[1,3]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
-
Maple
f:= gfun:-rectoproc({a(n) = 4*a(n-1) - a(n-2),a(1)=1,a(2)=3}, a(n), remember): seq(f(n),n=1..30); # Robert Israel, Jun 05 2015
-
Mathematica
a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}] (* Robert G. Wilson v, Jan 13 2005 *) LinearRecurrence[{4,-1},{1,3},30] (* or *) CoefficientList[Series[ (1-x)/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 26 2011 *) a[n_] := Sqrt[2/3] Cosh[(-1 - 2 n) ArcCsch[Sqrt[2]]]; Table[Simplify[a[n-1]], {n, 1, 12}] (* Peter Luschny, Oct 13 2020 *)
-
PARI
a(n)=([0,1; -1,4]^(n-1)*[1;3])[1,1] \\ Charles R Greathouse IV, Mar 18 2017
-
PARI
my(x='x+O('x^30)); Vec((1-x)/(1-4*x+x^2)) \\ G. C. Greubel, Feb 25 2019
-
Sage
[lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(1, 25)] # Zerinvary Lajos, Apr 29 2009
Formula
For n > 0, a(n) = ceiling( (2+sqrt(3))^n/(3+sqrt(3)) ).
From Paul Barry, Sep 17 2003: (Start)
G.f.: (1-x)/(1-4*x+x^2).
E.g.f.: exp(2*x)*(sinh(sqrt(3)*x)/sqrt(3) + cosh(sqrt(3)*x)).
a(n) = ( (3+sqrt(3))*(2+sqrt(3))^n + (3-sqrt(3))*(2-sqrt(3))^n )/6 (offset 0). (End)
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*2^(n-k). - Paul Barry, Jan 22 2005 [offset 0]
a(n) = (-1)^n*U(2*n, i*sqrt(2)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Jacobi_P(n,-1/2,1/2,2)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = sqrt(2+(2-sqrt(3))^(2*n-1) + (2+sqrt(3))^(2*n-1))/sqrt(6). - Gerry Martens, Jun 05 2015
a(n) = (1/2 + sqrt(3)/6)*(2-sqrt(3))^n + (1/2 - sqrt(3)/6)*(2+sqrt(3))^n. - Robert Israel, Jun 05 2015
a(n) = S(n-1,4) - S(n-2,4) = (-1)^(n-1)*S(2*(n-1), i*sqrt(2)), with Chebyshev S-polynomials (A049310), the imaginary unit i, S(-1, x) = 0, for n >= 1. See also the formula above by Paul Barry (with offset 0). - Wolfdieter Lang, Oct 12 2020
a(n) = sqrt(2/3)*cosh((-1 - 2*n) arccsch(sqrt(2))), where arccsch is the inverse hyperbolic cosecant function (with offset 0). - Peter Luschny, Oct 13 2020
From Peter Bala, May 04 2025: (Start)
a(n) = (1/sqrt(3)) * sqrt(1 - T(2*n-1, -2)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n-1); a(n) divides a(5*n-2); in general, for k >= 0, a(n) divides a((2*k+1)*n - k).
The aerated sequence [b(n)]n>=1 = [1, 0, 3, 0, 11, 0, 41, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -6, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Comments