A000774
a(n) = n!*(1 + Sum_{i=1..n} 1/i).
Original entry on oeis.org
1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456, 14257440, 160460640, 1965444480, 26029779840, 370643938560, 5646837369600, 91657072281600, 1579093018675200, 28779361764249600, 553210247226470400, 11185850044938240000, 237335752951879680000
Offset: 0
(1-x)^-1 * (1 - log(1-x)) = 1 + 2*x + 5/2*x^2 + 17/6*x^3 + ...
G.f.: 1+x = 1/(1+x) + 2*x/((1+x)*(1+2*x)) + 5*x^2/((1+x)*(1+2*x)*(1+3*x)) + 17*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 74*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
- Nathaniel Johnston, Table of n, a(n) for n = 0..250
- Jean-Christophe Aval, Samuele Giraudo, Théo Karaboghossian, and Adrian Tanasa, Graph operads: general construction and natural extensions of canonical operads, arXiv:1912.06563 [math.CO], 2019.
- Jean-Christophe Aval, Samuele Giraudo, Théo Karaboghossian, and Adrian Tanasa, Graph insertion operads, arXiv:2002.10926 [math.CO], 2020.
- Brant Jones, Katelynn D. Kochalski, Sarah Loeb, and Julia C. Walk, Strategy-indifferent games of best choice, arXiv:2107.04872 [math.CO], 2021.
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
- Sergey Kitaev and Jeffrey Remmel, Quadrant Marked Mesh Patterns, J. Int. Seq. 15 (2012) # 12.4.7.
- C. Lenormand, Arbres et permutations II, see p. 9.
- Shuzhen Lv and Philip B. Zhang, Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings, arXiv:2501.00357 [math.CO], 2024. See p. 13.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332.
-
A000774 := proc(n) local i,j; j := 0; for i to n do j := j+1/i od; (j+1)*n! end;
ZL :=[S, {S = Set(Cycle(Z),3 > card)}, labelled]: seq(combstruct[count](ZL, size=n), n=1..20); # Zerinvary Lajos, Mar 25 2008
a[0]:=1: p:=1: for n from 1 to 20 do
a[n]:=n*a[n-1]+p: p:=p*n: end do: # Paul Weisenhorn, Jun 03 2010
-
Table[n!(1+Sum[1/i,{i,n}]),{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
-
a(n)=n!*(1+sum(j=1,n, 1/j ));
-
{a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j*x+x*O(x^n)) )), n))} /* Paul D. Hanna, Mar 01 2012 */
A223901
Poly-Cauchy numbers of the second kind hat c_n^(-3).
Original entry on oeis.org
1, -8, 35, -161, 854, -5248, 36966, -294714, 2628600, -25963392, 281529192, -3326287848, 42546905712, -585889457328, 8643254959008, -136013600978784, 2274436197944064, -40278639752011008, 753115809287568384, -14826614346669090816, 306574242780102220800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012).
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^3: k in [0..n]]: n in [0..25]];
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^3, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^3); \\ Michel Marcus, Nov 14 2015
A223899
Poly-Cauchy numbers of the second kind hat c_n^(-2).
Original entry on oeis.org
1, -4, 13, -51, 244, -1392, 9260, -70508, 605320, -5788008, 61021872, -703384272, 8801449344, -118828732032, 1721888828928, -26656798602240, 439110126743040, -7669109089082880, 141557837068938240, -2753560001544053760, 56299265625742848000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^2: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^2, {k, 0, n}], {n, 0, 30}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^2); \\ Michel Marcus, Nov 14 2015
A223902
Poly-Cauchy numbers of the second kind hat c_n^(-4).
Original entry on oeis.org
1, -16, 97, -531, 3148, -20940, 156680, -1310840, 12166096, -124281120, 1387313520, -16813355280, 219967479744, -3090914335104, 46439677053120, -743069262651840, 12616998421804416, -226608929801923968, 4292762009479969536, -85545808260446050560, 1789078468694176410624
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^4, {k, 0, n}], {n, 0, 30}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^4); \\ Michel Marcus, Nov 14 2015
A223904
Poly-Cauchy numbers of the second kind hat c_n^(-5).
Original entry on oeis.org
1, -32, 275, -1817, 12134, -87784, 699894, -6158058, 59566464, -630057696, 7246806720, -90151868160, 1207028135520, -17314992935040, 265048030579680, -4313510679824160, 74387763047472000, -1355291635314213120, 26016022725597866880, -524865277479851360640, 11103724030717930095360
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^5: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^5, {k, 0, n}], {n, 0, 30}]
-
a(n) = sum(k=0, n, (-1)^k*stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
A081047
Difference of Stirling numbers of the first kind.
Original entry on oeis.org
1, 0, -1, -5, -26, -154, -1044, -8028, -69264, -663696, -6999840, -80627040, -1007441280, -13575738240, -196287356160, -3031488633600, -49811492505600, -867718162483200, -15974614352793600, -309920046408806400, -6320046028584960000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Thierry Dana-Picard and David G. Zeitoun, Sequences of definite integrals, infinite series and Stirling numbers, International Journal of Mathematical Education in Science and Technology, Volume 43, 2012 - Issue 2.
- Motohico Mulase, In Search of a Hidden Curve, arXiv:2501.00716 [math.QA], 2025. See p. 27.
-
With[{nn = 100}, CoefficientList[Series[(1 + Log[1 - x])/(1 - x), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Jan 21 2017 *)
A096747
Triangle read by rows: T(n,1) = 1, T(n,k) = T(n-1,k)+(n-1)*T(n-1,k-1) for 1<=k<=n+1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 7, 18, 24, 24, 1, 11, 46, 96, 120, 120, 1, 16, 101, 326, 600, 720, 720, 1, 22, 197, 932, 2556, 4320, 5040, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880
Offset: 0
Thomas J Engelsma (tom(AT)opertech.com), Dec 05 2004
Triangle begins:
*0.........................1
*1......................1.....1
*2...................1.....2.....2
*3................1.....4.....6.....6
*4.............1.....7....18....24....24
*5..........1....11....46....96...120...120
*6.......1....16...101...326...600...720...720
*7....1....22...197...932..2556..4320..5040..5040
T(5,3)=46 because 4*7+18=46
-
T:=proc(n,k) if k=1 then 1 elif k=n+1 then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form
with(combinat): T:=(n,k)->sum(abs(stirling1(n,n-i)),i=0..k-1): for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form; Emeric Deutsch, Jul 03 2005
-
T[n_, k_] := Sum[Abs[StirlingS1[n, n - i]], {i, 0, k}]; T[0, 0] := 1;
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 08 2016 *)
-
@CachedFunction
def T(n,k):
if n == 0: return 1
if k < 0: return 0
return T(n-1,k)+(n-1)*T(n-1,k-1)
for n in range(9): print([T(n,k) for k in (0..n)]) # Peter Luschny, Sep 15 2014
A349782
Triangle read by rows, T(n, k) = Sum_{j=0..k} |Stirling1(n, j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 6, 17, 23, 24, 0, 24, 74, 109, 119, 120, 0, 120, 394, 619, 704, 719, 720, 0, 720, 2484, 4108, 4843, 5018, 5039, 5040, 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320, 0, 40320, 149904, 268028, 335312, 357761, 362297, 362843, 362879, 362880
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 5, 6;
[4] 0, 6, 17, 23, 24;
[5] 0, 24, 74, 109, 119, 120;
[6] 0, 120, 394, 619, 704, 719, 720;
[7] 0, 720, 2484, 4108, 4843, 5018, 5039, 5040;
[8] 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320;
-
T := (n, k) -> add(abs(Stirling1(n,j)), j = 0..k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
T[n_, k_] := Sum[Abs[StirlingS1[n, j]], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 09 2021 *)
-
T(n, k) = sum(j=0, k, abs(stirling(n, j, 1))); \\ Michel Marcus, Dec 09 2021
A081103
Alternating sum of first three Stirling numbers of the first kind.
Original entry on oeis.org
0, 1, -4, 18, -95, 584, -4123, 32969, -294992, 2922956, -31791716, 376719892, -4832017320, 66713229192, -986611705584, 15561976320144, -260804276106624, 4628322010931328, -86710491660063744, 1710290952899283456, -35427639035553292800, 768970029545198092800
Offset: 0
Showing 1-9 of 9 results.
Comments