cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000774 a(n) = n!*(1 + Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456, 14257440, 160460640, 1965444480, 26029779840, 370643938560, 5646837369600, 91657072281600, 1579093018675200, 28779361764249600, 553210247226470400, 11185850044938240000, 237335752951879680000
Offset: 0

Views

Author

Keywords

Comments

Number of {12,12*,21}-avoiding signed permutations in the hyperoctahedral group.
Let M be the n X n matrix with M( i, i ) = i+1, other entries = 1. Then a(n) = det(M); example: a(3) = 17 = det([2, 1, 1; 1, 3, 1; 1, 1, 4]). - Philippe Deléham, Jun 13 2005.
With offset 1: number of permutations of the n-set into at most two cycles. - Joerg Arndt, Jun 22 2009
A ball goes with probability 1/(k+1) from place k to a place j with j=0..k; a(n)/n! is the average number of steps from place n to place 0. - Paul Weisenhorn, Jun 03 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012

Examples

			(1-x)^-1 * (1 - log(1-x)) = 1 + 2*x + 5/2*x^2 + 17/6*x^3 + ...
G.f.: 1+x = 1/(1+x) + 2*x/((1+x)*(1+2*x)) + 5*x^2/((1+x)*(1+2*x)*(1+3*x)) + 17*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 74*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
		

Crossrefs

Cf. A000254, A000776. Same as A081046 apart from signs.

Programs

  • Maple
    A000774 := proc(n) local i,j; j := 0; for i to n do j := j+1/i od; (j+1)*n! end;
    ZL :=[S, {S = Set(Cycle(Z),3 > card)}, labelled]: seq(combstruct[count](ZL, size=n), n=1..20); # Zerinvary Lajos, Mar 25 2008
    a[0]:=1: p:=1: for n from 1 to 20 do
    a[n]:=n*a[n-1]+p: p:=p*n: end do: # Paul Weisenhorn, Jun 03 2010
  • Mathematica
    Table[n!(1+Sum[1/i,{i,n}]),{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    a(n)=n!*(1+sum(j=1,n, 1/j ));
    
  • PARI
    {a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j*x+x*O(x^n)) )), n))} /* Paul D. Hanna, Mar 01 2012 */

Formula

E.g.f.: A(x) = (1-x)^-1 * (1 - log(1-x)).
a(n+1) = (n+1)*a(n) + n!. - Jon Perry, Sep 26 2004
a(n) = A000254(n) + n!. - Mark van Hoeij, Jul 06 2010
G.f.: 1+x = Sum_{n>=0} a(n) * x^n / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Mar 01 2012
a(n) = Sum_{k=0..n} (k+1)*|s(n,k)|, where s(n,k) are Stirling numbers of the first kind (A008275). - Peter Luschny, Oct 16 2012
Conjecture: a(n) +(-2*n+1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 26 2012

A223901 Poly-Cauchy numbers of the second kind hat c_n^(-3).

Original entry on oeis.org

1, -8, 35, -161, 854, -5248, 36966, -294714, 2628600, -25963392, 281529192, -3326287848, 42546905712, -585889457328, 8643254959008, -136013600978784, 2274436197944064, -40278639752011008, 753115809287568384, -14826614346669090816, 306574242780102220800
Offset: 0

Views

Author

Takao Komatsu, Mar 29 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Programs

  • Magma
    [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^3: k in [0..n]]: n in [0..25]];
    
  • Mathematica
    Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^3, {k, 0, n}], {n, 0, 25}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^3); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * (-1)^k * (k+1)^3.
E.g.f.: (1 - 7 * log(1 + x) + 6 * log(1 + x)^2 - log(1 + x)^3) / (1 + x). - Ilya Gutkovskiy, Aug 10 2021
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^3 * (-log(1+x))^k / k!.
a(n) = (-1)^n * Sum_{k=0..3} k! * Stirling2(4,k+1) * |Stirling1(n+1,k+1)|. (End)

A223899 Poly-Cauchy numbers of the second kind hat c_n^(-2).

Original entry on oeis.org

1, -4, 13, -51, 244, -1392, 9260, -70508, 605320, -5788008, 61021872, -703384272, 8801449344, -118828732032, 1721888828928, -26656798602240, 439110126743040, -7669109089082880, 141557837068938240, -2753560001544053760, 56299265625742848000
Offset: 0

Views

Author

Takao Komatsu, Mar 29 2013

Keywords

Crossrefs

Programs

  • Magma
    [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^2: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
    
  • Mathematica
    Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^2, {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^2); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} (-1)^k * (k+1)^2 * Stirling1(n,k).
E.g.f.: (1 - log(1 + x) * (3 - log(1 + x))) / (1 + x). - Ilya Gutkovskiy, Aug 09 2021
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^2 * (-log(1+x))^k / k!.
a(n) = (-1)^n * Sum_{k=0..2} k! * Stirling2(3,k+1) * |Stirling1(n+1,k+1)|. (End)

A223902 Poly-Cauchy numbers of the second kind hat c_n^(-4).

Original entry on oeis.org

1, -16, 97, -531, 3148, -20940, 156680, -1310840, 12166096, -124281120, 1387313520, -16813355280, 219967479744, -3090914335104, 46439677053120, -743069262651840, 12616998421804416, -226608929801923968, 4292762009479969536, -85545808260446050560, 1789078468694176410624
Offset: 0

Views

Author

Takao Komatsu, Mar 29 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^4, {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^4); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} (-1)^k * (k+1)^4 * Stirling1(n,k).
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^4 * (-log(1+x))^k / k!.
E.g.f.: (1/(1+x)) * Sum_{k=0..4} Stirling2(5,k+1) * (-log(1+x))^k.
a(n) = (-1)^n * Sum_{k=0..4} k! * Stirling2(5,k+1) * |Stirling1(n+1,k+1)|. (End)

A223904 Poly-Cauchy numbers of the second kind hat c_n^(-5).

Original entry on oeis.org

1, -32, 275, -1817, 12134, -87784, 699894, -6158058, 59566464, -630057696, 7246806720, -90151868160, 1207028135520, -17314992935040, 265048030579680, -4313510679824160, 74387763047472000, -1355291635314213120, 26016022725597866880, -524865277479851360640, 11103724030717930095360
Offset: 0

Views

Author

Takao Komatsu, Mar 29 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Programs

  • Magma
    [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^5: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
    
  • Mathematica
    Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^5, {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} (-1)^k * (k+1)^5 * Stirling1(n,k).
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^5 * (-log(1+x))^k / k!.
E.g.f.: (1/(1+x)) * Sum_{k=0..5} Stirling2(6,k+1) * (-log(1+x))^k.
a(n) = (-1)^n * Sum_{k=0..5} k! * Stirling2(6,k+1) * |Stirling1(n+1,k+1)|. (End)

A081047 Difference of Stirling numbers of the first kind.

Original entry on oeis.org

1, 0, -1, -5, -26, -154, -1044, -8028, -69264, -663696, -6999840, -80627040, -1007441280, -13575738240, -196287356160, -3031488633600, -49811492505600, -867718162483200, -15974614352793600, -309920046408806400, -6320046028584960000
Offset: 0

Views

Author

Paul Barry, Mar 05 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn = 100}, CoefficientList[Series[(1 + Log[1 - x])/(1 - x), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Jan 21 2017 *)

Formula

E.g.f.: (1+log(1-x))/(1-x). - Paul Barry, Nov 26 2008
a(n) = abs(s(n+1, 1))-abs(s(n+1, 2)), where s(n, m) is a (signed) Stirling number of the first kind (A008275). (corrected by Wolfdieter Lang, Jun 20 2011)
a(n) = A094645(n+2,2), n>=0. - _Wolfdieter Lang, Jun 20 2011

A096747 Triangle read by rows: T(n,1) = 1, T(n,k) = T(n-1,k)+(n-1)*T(n-1,k-1) for 1<=k<=n+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 7, 18, 24, 24, 1, 11, 46, 96, 120, 120, 1, 16, 101, 326, 600, 720, 720, 1, 22, 197, 932, 2556, 4320, 5040, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880
Offset: 0

Views

Author

Thomas J Engelsma (tom(AT)opertech.com), Dec 05 2004

Keywords

Comments

Note: rows continue as factorials - stopped at second factorial for clarity.
T(n,n) = T(n,n+1) = n!. Sum of row n = n! + s(n,2), where s(n,2) are signless Stirling numbers of the first kind (A081046). T(n,k) = A109822(n,k) for 1<=k<=n (i.e. triangle without the last column is A109822). - Emeric Deutsch, Jul 03 2005
Sum(k=0..n-1, T(n,k))/T(n,n-1) are for n>=1 the harmonic numbers A001008(n)/A002805(n). - Peter Luschny, Sep 15 2014

Examples

			Triangle begins:
*0.........................1
*1......................1.....1
*2...................1.....2.....2
*3................1.....4.....6.....6
*4.............1.....7....18....24....24
*5..........1....11....46....96...120...120
*6.......1....16...101...326...600...720...720
*7....1....22...197...932..2556..4320..5040..5040
T(5,3)=46 because 4*7+18=46
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k=1 then 1 elif k=n+1 then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form
    with(combinat): T:=(n,k)->sum(abs(stirling1(n,n-i)),i=0..k-1): for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form; Emeric Deutsch, Jul 03 2005
  • Mathematica
    T[n_, k_] := Sum[Abs[StirlingS1[n, n - i]], {i, 0, k}]; T[0, 0] := 1;
    Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 08 2016 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if n == 0: return 1
        if k < 0: return 0
        return T(n-1,k)+(n-1)*T(n-1,k-1)
    for n in range(9): print([T(n,k) for k in (0..n)]) # Peter Luschny, Sep 15 2014

Formula

T(n+1, i) = n*T(n, i-1)+T(n, i)
T(n, k) = sum(|stirling1(n, n-i)|, i=0..k-1) for 1<=k<=n. - Emeric Deutsch, Jul 03 2005
E.g.f. as triangle: g(x,y) = Sum_{n>=0} Sum_{1<=k<=n+1} T(n,k) x^n y^k/n! where
g(x,y) = -y^2/((y-1)*(x*y-1)) - (1-x*y)^(-1/y)*(-y+y^2/(y-1)). - Robert Israel, Nov 28 2016

Extensions

More terms from Emeric Deutsch, Jul 03 2005

A349782 Triangle read by rows, T(n, k) = Sum_{j=0..k} |Stirling1(n, j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 6, 17, 23, 24, 0, 24, 74, 109, 119, 120, 0, 120, 394, 619, 704, 719, 720, 0, 720, 2484, 4108, 4843, 5018, 5039, 5040, 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320, 0, 40320, 149904, 268028, 335312, 357761, 362297, 362843, 362879, 362880
Offset: 0

Views

Author

Peter Luschny, Dec 02 2021

Keywords

Comments

T(n, k) is the number of permutations of n objects that contain at most k cycles.

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,    2;
[3] 0, 2,    5,     6;
[4] 0, 6,    17,    23,    24;
[5] 0, 24,   74,    109,   119,   120;
[6] 0, 120,  394,   619,   704,   719,   720;
[7] 0, 720,  2484,  4108,  4843,  5018,  5039,  5040;
[8] 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320;
		

Crossrefs

Row sums: A121586, central terms: A349783.

Programs

  • Maple
    T := (n, k) -> add(abs(Stirling1(n,j)), j = 0..k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := Sum[Abs[StirlingS1[n, j]], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 09 2021 *)
  • PARI
    T(n, k) = sum(j=0, k, abs(stirling(n, j, 1))); \\ Michel Marcus, Dec 09 2021

Formula

T(n,k) = Sum_{j=0..k} A132393(n,j). - Alois P. Heinz, Dec 10 2021

A081103 Alternating sum of first three Stirling numbers of the first kind.

Original entry on oeis.org

0, 1, -4, 18, -95, 584, -4123, 32969, -294992, 2922956, -31791716, 376719892, -4832017320, 66713229192, -986611705584, 15561976320144, -260804276106624, 4628322010931328, -86710491660063744, 1710290952899283456, -35427639035553292800, 768970029545198092800
Offset: 0

Views

Author

Paul Barry, Mar 05 2003

Keywords

Crossrefs

Formula

a(n) = s(n, 1)-s(n, 2)+s(n, 3), s(n, m)= signed Stirling numbers of the first kind.
E.g.f.: (1+x)^(-1)*(log(1+x)-log(1+x)^2/2+log(1+x)^3/6).
Showing 1-9 of 9 results.