A082769 a(n) = smallest palindromic prime that begins with A082768(n), or 0 if no such number exists.
11, 3, 7, 919, 101, 11, 12421, 131, 14341, 151, 16061, 17471, 181, 191, 30103, 313, 32323, 33533, 34543, 353, 36263, 373, 383, 39293, 70207, 71317, 727, 73037, 74047, 757, 76367, 77377, 787, 797, 90709, 919, 929, 93139, 94049, 95959, 96269, 97379, 98389, 9902099, 1003001, 101, 1022201, 10301, 1043401, 10501, 10601, 1074701, 1082801, 1092901
Offset: 1
Programs
-
Maple
ispali := proc(n,b) local dgs,i ; dgs := convert(n,base,b) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then return false; end if; end do: true; end proc: L082768 := [seq(A082768(n),n=1..200)] ; # use code in A082768 L082769 := [seq(0,n=1..200)] ; for pi from 2 do p :=ithprime(pi) ; if ispali(p,10) then pdgs := convert(p,base,10) ; for sh from 0 do restp := add(op(i,pdgs)*10^(i-1),i=1..nops(pdgs)) ; for i from 1 to nops(L082768) do if op(i,L082768) = restp then if op(i,L082769) = 0 then L082769 := subsop(i=p,L082769) ; print(L082769) ; end if; end if; end do: # chop digits from palindromic prime starting at least signif pdgs := subsop(1=NULL,pdgs) ; if nops(pdgs) = 0 then break ; end if; end do: end if; end do: # R. J. Mathar, Aug 27 2025
Extensions
More terms from David Wasserman, Jul 28 2005
12 more terms from R. J. Mathar, Aug 27 2025
Comments