cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083088 First column of table A083087.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110, 111, 113, 115
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2003

Keywords

Comments

It appears that A188937 gives the positions of 0 in the zero-one sequence A188037; complement of A080754. - Clark Kimberling, Mar 19 2011
Is this (apart from the prefixed a(0)) the same as A080755? - R. J. Mathar, Jul 31 2025

Crossrefs

Programs

  • Magma
    z:=70; x:=1+Sqrt(2); [ Floor(n*x/(x-1))+1: n in [0..z] ]; // Klaus Brockhaus, Jan 04 2011
  • Mathematica
    f[n_] := Floor[n/Sqrt@2 + n + 1]; Array[f, 68, 0]

Formula

a(n) = floor(n*x/(x-1)) + 1, n>=0, where x=1+sqrt(2).
a(n) = floor(n/sqrt(2)) + n + 1 = 1+n+A049472(n).

Extensions

This entry formerly contained an erroneous comment, which was deleted by N. J. A. Sloane, Jan 30 2008

A083090 Main diagonal of table A083087.

Original entry on oeis.org

1, 5, 25, 90, 247, 766, 2258, 5860, 16526, 45639, 124043, 313327, 837221, 2216256, 5545541, 14524810, 37810204, 97907017, 242993558, 625252309, 1602714963, 3962518559, 10109705767, 25718726896, 63402237401, 160711911464
Offset: 0

Views

Author

Paul D. Hanna, Apr 22 2003

Keywords

Crossrefs

Formula

a(n) = T(n, n), where T(n, 0) = floor(n*x/(x-1)) + 1, T(n, k+1) = ceiling(x*T(n, k)), for n >= 0, k >= 0, where x = 1+sqrt(2).

A083091 Antidiagonal sums of table A083087.

Original entry on oeis.org

1, 5, 17, 49, 128, 321, 790, 1924, 4664, 11282, 27262, 65843, 158988, 383863, 926761, 2237435, 5401685, 13040863, 31483472, 76007871, 183499282, 443006506, 1069512368, 2582031320, 6233575089, 15049181582, 36331938341, 87713058356
Offset: 0

Views

Author

Paul D. Hanna, Apr 22 2003

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..n} T(k, n-k), where T(n, 0) = floor(n*x/(x-1)) + 1, T(n, k+1) = ceiling(x*T(n, k)), for n>=0, k>=0, with x = 1 + sqrt(2).

A113782 a(n) = k such that A083087(k-1) = n.

Original entry on oeis.org

1, 3, 2, 6, 5, 10, 15, 4, 21, 9, 28, 36, 8, 45, 14, 55, 20, 66, 78, 7, 91, 27, 105, 120, 13, 136, 35, 153, 44, 171, 190, 12, 210, 54, 231, 253, 19, 276, 65, 300, 325, 26, 351, 77, 378, 90, 406, 435, 11, 465, 104, 496, 528, 34, 561, 119, 595, 135, 630, 666, 18, 703
Offset: 1

Views

Author

Klaus Brockhaus, Jan 19 2006

Keywords

Comments

Sequence is a permutation of the positive integers; inverse permutation to sequence A083087 taken with offset 1.

Examples

			A083087(9) = 6, hence a(6) = 10.
		

Crossrefs

Cf. A083087.

A048739 Expansion of 1/((1 - x)*(1 - 2*x - x^2)).

Original entry on oeis.org

1, 3, 8, 20, 49, 119, 288, 696, 1681, 4059, 9800, 23660, 57121, 137903, 332928, 803760, 1940449, 4684659, 11309768, 27304196, 65918161, 159140519, 384199200, 927538920, 2239277041, 5406093003, 13051463048, 31509019100, 76069501249
Offset: 0

Views

Author

Keywords

Comments

Partial sums of Pell numbers A000129.
W(n){1,3;2,-1,1} = Sum_{i=1..n} W(i){1,2;2,-1,0}, where W(n){a,b; p,q,r} implies x(n) = p*x(n-1) - q*x(n-2) + r; x(0)=a, x(1)=b.
Number of 2 X (n+1) binary arrays with path of adjacent 1's from upper left to lower right corner. - R. H. Hardin, Mar 16 2002
Binomial transform of A029744. - Paul Barry, Apr 23 2004
Number of (s(0), s(1), ..., s(n+2)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+2, s(0) = 1, s(n+2) = 3. - Herbert Kociemba, Jun 16 2004
Equals row sums of triangle A153346. - Gary W. Adamson, Dec 24 2008
Equals the sum of the terms of the antidiagonals of A142978. - J. M. Bergot, Nov 13 2012
a(p-2) == 0 mod p where p is an odd prime, see A270342. - Altug Alkan, Mar 15 2016
Also, the lexicographically earliest sequence of positive integers such that for n > 3, {sqrt(2)*a(n)} is located strictly between {sqrt(2)*a(n-1)} and {sqrt(2)*a(n-2)} where {} denotes the fractional part. - Ivan Neretin, May 02 2017
a(n+1) is the number of weak orderings on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n. - J. Devillet, Oct 06 2017

References

  • Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3, d_{4n+3}.

Crossrefs

First row of table A083087.
With a different offset, a(4n)=A008843(n), a(4n-2)=8*A001110(n), a(2n-1)=A001652(n).

Programs

  • Maple
    a:=n->sum(fibonacci(i,2), i=0..n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    Join[{a=1,b=3},Table[c=2*b+a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[1/(1-3x+x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-1},{1,3,8},30] (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n)=local(w=quadgen(8));-1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n
    
  • PARI
    vector(100, n, n--; floor((1+sqrt(2))^(n+2)/4)) \\ Altug Alkan, Oct 07 2015
    
  • PARI
    Vec(1/((1-x)*(1-2*x-x^2)) + O(x^40)) \\ Michel Marcus, May 06 2017

Formula

a(n) = 2*a(n-1) + a(n-2) + 1 with n > 1, a(0)=1, a(1)=3.
a(n) = ((2 + (3*sqrt(2))/2)*(1 + sqrt(2))^n - (2 - (3*sqrt(2))/2)*(1 - sqrt(2))^n )/(2*sqrt(2)) - 1/2.
a(0)=1, a(n+1) = ceiling(x*a(n)) for n > 0, where x = 1+sqrt(2). - Paul D. Hanna, Apr 22 2003
a(n) = 3*a(n-1) - a(n-2) - a(n-3). With two leading zeros, e.g.f. is exp(x)(cosh(sqrt(2)x)-1)/2. a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, 2k+2)2^k. - Paul Barry, Aug 16 2003
-a(-3-n) = A077921(n). - N. J. A. Sloane, Sep 13 2003
E.g.f.: exp(x)(cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2. - N. J. A. Sloane, Sep 13 2003
a(n) = floor((1+sqrt(2))^(n+2)/4). - Bruno Berselli, Feb 06 2013
a(n) = (((1-sqrt(2))^(n+2) + (1+sqrt(2))^(n+2) - 2) / 4). - Altug Alkan, Mar 16 2016
2*a(n) = A001333(n+2)-1. - R. J. Mathar, Oct 11 2017
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*2^floor(k/2). - Tony Foster III, Oct 12 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A192386 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 8, 8, 96, 224, 1408, 4608, 22784, 86016, 386048, 1548288, 6676480, 27467776, 116490240, 484409344, 2040135680, 8521777152, 35786063872, 149761818624, 628140015616, 2630784909312, 11028578435072, 46205266558976, 193656954814464
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+5). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1
  p(1, x) =     2*x -> 2*x
  p(2, x) = 3 +   x +  3*x^2 -> 8 + 4*x
  p(3, x) =    12*x +  4*x^2 +  4*x^3 -> 8 + 32*x
  p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x.
From these, read A192386 = (1, 0, 8, 8, 96, ...) and A192387 = (0, 2, 4, 32, 96, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    Coefficients(R!( x*(1-2*x-4*x^2)/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    q[x_]:= x+1; d= Sqrt[x+5];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n,6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[ FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}];
    Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192386 *)
    Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192387 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192388 *)
    LinearRecurrence[{2,12,-8,-16}, {1,0,8,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192386
        if (n<5): return (0,1,0,8,8)[n]
        else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From Colin Barker, May 11 2014: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) - 8*a(n-3) - 16*a(n-4).
G.f.: x*(1-2*x-4*x^2)/(1-2*x-12*x^2+8*x^3+16*x^4). (End)
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+5))^n - (x-sqrt(x+5))^n)/(2*sqrt(x+5)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k-1). (End)

A191440 Dispersion of ([n*sqrt(2)+n+3/2]), where [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 3, 2, 8, 6, 4, 20, 15, 11, 5, 49, 37, 28, 13, 7, 119, 90, 69, 32, 18, 9, 288, 218, 168, 78, 44, 23, 10, 696, 527, 407, 189, 107, 57, 25, 12, 1681, 1273, 984, 457, 259, 139, 61, 30, 14, 4059, 3074, 2377, 1104, 626, 337, 148, 73, 35, 16, 9800, 7422, 5740
Offset: 1

Views

Author

Clark Kimberling, Jun 04 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1....3....8....20...49
  2....6....15...37...90
  4....11...28...69...168
  5....13...32...78...189
  7....18...44...107..259
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;  x = Sqr[2];
    f[n_] := Floor[n*x+n+3/2] (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191440 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191440 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
Showing 1-7 of 7 results.