cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A127608 Sequence arising from the factorization of F(n) = A083102(n-1) and L(n) = A127261. F(0) = 0, F(1) = 1, F(n) = 2*F(n-1)+10*F(n-2), L(0) = 2, L(1) = 2, L(n) = 2*L(n-1)+10*L(n-2).

Original entry on oeis.org

2, 1, 34, 24, 716, 14, 13784, 376, 7624, 236, 4842784, 276, 90305216, 4264, 69136, 121376, 31362601216, 5624, 584397750784, 93776, 23235136, 1463264, 202903086454784, 111376, 5280370789376, 27244736, 271771738624
Offset: 1

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Examples

			F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*34*24*14*276=6306048
F(9)=a(2)*a(6)*a(18)= 1*14*5624=78736
L(12)=a(8)*a(24)=376*111376=41877376
L(21)=a(1)*a(3)*a(7)*a(21)=2*34*13784*23235136=21778571794432
		

Crossrefs

Programs

  • Maple
    with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(11)-1)^degree(cyclotomic(n, x), x) *cyclotomic(n, (6+sqrt(11))/5), 30)) od: seq(a[n], n=1..60);

Formula

a(n)= (sqrt(11)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,(6+sqrt(11)/5) L(n)=10*F(n-1)+F(n+1) F(2n)=Product(d|2n) a(d), F(2n+1)=Product(d|2n+1) a(2d). L(2n+1)=Product(d|2n+1, a(d)), for k>0: L(2^k*(2n+1))=Product(d|2n+1, a(2^(k+1)*d)). for odd prime p, a(p)=L(p)/2, a(2p)=f(p) a(1)=2, a(2)=1; a(2^(k+1))=L(2^k);

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A083101 a(n) = 2*a(n-1) + 10*a(n-2), with a(0) = 1, a(1) = 12.

Original entry on oeis.org

1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312, 202903086454784, 875857310322688, 3780745485193216
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

Keywords

Comments

a(n)/A083102(n) converges to sqrt(11).
a(n-1) is the number of compositions of n when there are 1 type of 1 and 11 types of other natural numbers. - Milan Janjic, Aug 13 2010
A133294 is an essentially identical sequence (with a different start). - N. J. A. Sloane, Dec 31 2012

Crossrefs

Programs

  • Magma
    I:=[1,12]; [n le 2 select I[n] else 2*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1+10x)/(1-2x-10x^2), {x, 0, 25}], x]
    LinearRecurrence[{2, 10},{1, 12},22] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+10*x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Jan 08 2018
    

Formula

a(n+1) = a(n) + 11*A083102(n).
G.f.: (1+10*x)/(1-2*x-10*x^2).
If p[1]=1, and p[i]=11, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A274526 a(n) = ((1 + sqrt(11))^n - (1 - sqrt(11))^n)/sqrt(11).

Original entry on oeis.org

0, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472, 675904, 2926528, 12612096, 54489472, 235099904, 1015094528, 4381188096, 18913321472, 81638523904, 352410262528, 1521205764096, 6566514153472, 28345085947904, 122355313430528, 528161486340096
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 11111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 100111111111111001 -> 1001111111111110011001100110011001100110011001100110011001100111111111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 28, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 10}, {0, 2}, 25]
  • PARI
    concat(0, Vec(2*x/(1-2*x-10*x^2) + O(x^99))) \\ Altug Alkan, Jun 27 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 10*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(11)*x)/sqrt(11).
Dirichlet g.f.: (PolyLog(s,1+sqrt(11)) - PolyLog(s,1-sqrt(11)))/sqrt(11), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 10*a(n-2).
a(n) = 2*A083102(n-1), n>0.
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(11) = 1 + A010468.

A103280 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1];
Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,2] is equivalent to the recursion a(1) = 1, a(2) = N+2, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
0
1
N + 2
N^2 + 2*N + 6
N^3 + 2*N^2 + 8*N + 16
N^4 + 2*N^3 + 10*N^2 + 24*N + 44
N^5 + 2*N^4 + 12*N^3 + 32*N^2 + 76*N + 120
N^6 + 2*N^5 + 14*N^4 + 40*N^3 + 112*N^2 + 232*N + 328
N^7 + 2*N^6 + 16*N^5 + 48*N^4 + 152*N^3 + 368*N^2 + 704*N + 896
N^8 + 2*N^7 + 18*N^6 + 56*N^5 + 196*N^4 + 528*N^3 + 1200*N^2 + 2112*N + 2448
etc.

Examples

			Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
		

Crossrefs

Cf. A103279 (for (M^n)[1, 1]), A002605 (for N=0), A000244 (for N=1), A007070 (for N=2), A002450 (for N=3), A030192 (for N=4), A152268 (for N=5), A006131 (for N=-1), A000400 (bisection for N=-2), A015443 (for N=-3), A083102 (for N=-4).

Programs

  • PARI
    T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
    for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A292847 a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).

Original entry on oeis.org

5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Examples

			For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
		

Crossrefs

Programs

  • Mathematica
    g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]);
    Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
  • PARI
    g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1]
    a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025

Formula

When 2*n + 3 = p is prime, a(n) = p.
Showing 1-10 of 10 results.