cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A140725 Inverse binomial transform of (0 followed by A037481).

Original entry on oeis.org

0, 1, 4, 10, 34, 94, 298, 862, 2650, 7822, 23722, 70654, 212986, 636910, 1914826, 5736286, 17225242, 51642958, 154994410, 464852158, 1394818618, 4183931566, 12552843274, 37656432670, 112973492314, 338912088334, 1016753042218
Offset: 0

Views

Author

Paul Curtz, Jul 12 2008

Keywords

Comments

From Sean A. Irvine, Jun 07 2025: (Start)
For n>=1, the number of walks of length n-1 starting at vertex 1 (or, by symmetry, vertex 4) in the graph K_{1,1,3}:
1---2
/|\ /
0 | X
\|/ \
4---3. (End)

Crossrefs

Cf. A083421 (bin. transform of (0 followed by A037481)).

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{1,6},{1,4},26]] (* or *) a[0]=0;a[n_]:= ((-2)^n+4*3^n)/10;Array[a,27,0] (* James C. McMahon, Jul 13 2025 *)

Formula

a(n)= (-1)^n*A091003(n), n>0.
a(n+1)-3*a(n) = (-1)^(n+1)*A000079(n-1), n>0.
|a(n+1)-3*a(n)| = A011782(n).
From R. J. Mathar, Jul 14 2008: (Start)
O.g.f.: (1+3*x)*x / ((1+2*x)*(1-3*x)).
a(n) = ((-2)^n+4*3^n)/10, n>0. (End)
a(n) = a(n-1)+6*a(n-2) for n>2, a(0)=0, a(1)=1, a(2)=4. - Philippe Deléham, Nov 17 2013
a(n) + a(n+1) = A140796(n). - Philippe Deléham, Nov 17 2013
a(n+1) = sum_{k=0..n} A108561(n,k)*(-3)^k. - Philippe Deléham, Nov 17 2013

Extensions

Edited and extended by R. J. Mathar, Jul 14 2008
Showing 1-2 of 2 results.