cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A087695 Numbers n such that n + 3 and n - 3 are both prime.

Original entry on oeis.org

8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Comments

A010051(a(n)-3) * A010051(a(n)+3) = 1. - Reinhard Zumkeller, Nov 17 2015

Crossrefs

Programs

  • Haskell
    a087695 n = a087695_list !! (n-1)
    a087695_list = filter
       (\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..]
    -- Reinhard Zumkeller, Nov 17 2015
    
  • Maple
    ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL),(p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
  • Mathematica
    lst={};Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
    Select[Range[600],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *)
  • PARI
    p=2; q=3; forprime(r=5,1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018

Formula

a(n) = A046117(n) - 3.

A088765 a(n) = A087696(n)/2.

Original entry on oeis.org

4, 6, 9, 12, 18, 21, 24, 33, 39, 42, 51, 54, 66, 72, 81, 84, 93, 114, 117, 123, 138, 144, 156, 171, 177, 189, 192, 207, 213, 219, 222, 231, 252, 276, 291, 306, 318, 324, 339, 348, 357, 369, 378, 396, 408, 417, 429, 441, 462, 471, 486, 507, 513, 522, 528, 546
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Comments

"Example 3: Ordinary twins 2a +- 1 for a = 2, 3, 6, 9, 15, . . . have D = 1 and are in class I. For D = 3, the twins 2a +- 3 occur for a = 4, 5, 7, 8, 10"; the latter is this sequence, from p. 3 of Weber. - Jonathan Vos Post, Feb 14 2011

Crossrefs

Programs

  • Magma
    [n/2: n in [3..2000] |IsPrime(n+5) and IsPrime(n-5)]; // Vincenzo Librandi, May 20 2017
  • Mathematica
    Select[Range[3, 2000], PrimeQ[# + 5] && PrimeQ[# - 5] &] / 2 (* Vincenzo Librandi, May 20 2017 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, May 21 2017

A260689 Table read by rows: numbers m such that (2*n-m, 2*n+m) is a prime pair.

Original entry on oeis.org

1, 1, 3, 5, 3, 7, 1, 5, 7, 3, 9, 3, 13, 1, 5, 11, 13, 3, 9, 17, 9, 15, 19, 5, 7, 13, 17, 19, 3, 15, 21, 9, 15, 25, 1, 7, 11, 13, 17, 23, 9, 15, 21, 27, 29, 3, 27, 5, 7, 17, 23, 25, 31, 9, 15, 21, 33, 35, 3, 21, 27, 33, 1, 5, 11, 19, 25, 29, 31, 37, 3, 15, 27
Offset: 2

Views

Author

Reinhard Zumkeller, Nov 17 2015

Keywords

Comments

1 <= T(n,k) <= 2*n-3; T(n,2) > 3 for n > 3; all terms are odd;
A264526(n) = T(n,1);
A264527(n) = T(n,A069360(n));
T(A040040(n),1) = 1;
T(A088763(n),1) = 3.

Examples

			.   n | T(n,k)          | (2*n-T(n,k), 2*n+T(n,k))       k=1..A069360(n)
. ----+-----------------+-----------------------------------------------
.   2 | 1               | (3,5)
.   3 | 1               | (5,7)
.   4 | 3,5             | (5,11) (3,13)
.   5 | 3,7             | (7,13) (3,17)
.   6 | 1,5,7           | (11,13) (7,17) (5,19)
.   7 | 3,9             | (11,17) (5,23)
.   8 | 3,13            | (13,19) (3,29)
.   9 | 1,5,11,13       | (17,19) (13,23) (7,29) (5,31)
.  10 | 3,9,17          | (17,23) (11,29) (3,37)
.  11 | 9,15,19         | (13,31) (7,37) (3,41)
.  12 | 5,7,13,17,19    | (19,29) (17,31) (11,37) (7,41) (5,43)
.  13 | 3,15,21         | (23,29) (11,41) (5,47)
.  14 | 9,15,25         | (19,37) (13,43) (3,53)
.  15 | 1,7,11,13,17,23 | (29,31) (23,37) (19,41) (17,43) (13,47) (7,53)
.  16 | 9,15,21,27,29   | (23,41) (17,47) (11,53) (5,59) (3,61)
.  17 | 3,27            | (31,37) (7,61)
.  18 | 5,7,17,23,25,31 | (31,41) (29,43) (19,53) (13,59) (11,61) (5,67)
.  19 | 9,15,21,33,35   | (29,47) (23,53) (17,59) (5,71) (3,73)
.  20 | 3,21,27,33      | (37,43) (19,61) (13,67) (7,73) .
		

Crossrefs

Cf. A069360 (row lengths), A010051, A264526, A264527.

Programs

  • Haskell
    a260689 n k = a260689_tabf !! (n-2) !! (k-1)
    a260689_row n = [m | m <- [1, 3 .. 2 * n - 3],
                         a010051' (2*n + m) == 1, a010051' (2*n - m) == 1]
    a260689_tabf = map a260689_row [2..]

A088769 a(n) = A087678(n)/2.

Original entry on oeis.org

7, 10, 11, 14, 16, 19, 25, 26, 31, 35, 40, 44, 46, 49, 59, 61, 70, 74, 79, 86, 91, 94, 95, 101, 110, 116, 121, 124, 130, 136, 151, 161, 170, 179, 194, 196, 205, 215, 220, 224, 226, 229, 235, 250, 256, 266, 289, 304, 305, 311, 325, 326, 334, 341, 346, 350, 355
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Crossrefs

Programs

  • Magma
    [n/2: n in [5..1500] |IsPrime(n+9) and IsPrime(n-9)]; // Vincenzo Librandi, May 22 2017
  • Mathematica
    Select[Range[5, 2000], PrimeQ[# + 9] && PrimeQ[# - 9] &] / 2 (* Vincenzo Librandi, May 21 2017 *)

A264526 Smallest number m such that both 2*n-m and 2*n+m are primes.

Original entry on oeis.org

1, 1, 3, 3, 1, 3, 3, 1, 3, 9, 5, 3, 9, 1, 9, 3, 5, 9, 3, 1, 3, 15, 5, 3, 9, 7, 3, 15, 1, 9, 3, 5, 15, 3, 1, 15, 3, 5, 9, 15, 5, 3, 9, 7, 9, 15, 7, 9, 3, 1, 3, 3, 1, 3, 15, 13, 15, 9, 7, 9, 15, 13, 21, 21, 5, 3, 27, 1, 9, 15, 5, 33, 9, 1, 15, 3, 7, 9, 3, 5
Offset: 2

Views

Author

Reinhard Zumkeller, Nov 17 2015

Keywords

Crossrefs

Programs

  • Haskell
    a264526 = head . a260689_row
    
  • Mathematica
    snm[n_]:=Module[{m=1},While[!PrimeQ[2n-m]||!PrimeQ[2n+m],m=m+2];m]; Array[ snm,90,2] (* Harvey P. Dale, Aug 13 2017, optimized by Ivan N. Ianakiev, Mar 16 2018 *)
  • PARI
    a(n) = {my(m=1); while(!(isprime(2*n-m) && isprime(2*n+m)), m+=2); m;} \\ Michel Marcus, Mar 18 2018

Formula

a(n) = A260689(n,1);
a(A040040(n)) = 1;
a(A014574(n)/2) = 1;
a(A088763(n)) = 3.
a(n) = A082467(2n). - Ivan N. Ianakiev, Oct 27 2021

A088767 a(n) = A087697(n)/2.

Original entry on oeis.org

5, 6, 12, 15, 18, 27, 30, 33, 45, 48, 60, 72, 78, 87, 93, 102, 117, 132, 135, 138, 150, 162, 180, 183, 195, 213, 225, 228, 258, 282, 285, 297, 300, 303, 312, 327, 333, 342, 363, 375, 390, 402, 408, 423, 435, 480, 492, 495, 513, 528, 555, 558, 597, 612, 615, 642
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Comments

Numbers n such that 2*n-7 [A089192] and 2*n+7 [A105760] are both prime. [Vincenzo Librandi, Jul 10 2010]

Crossrefs

Showing 1-6 of 6 results.