Original entry on oeis.org
2, 28, 704, 26800, 1404416, 94890112, 7887853568, 779773444864, 89407927009280, 11666949886007296, 1707352344419336192, 276938622991133237248, 49316570352062326636544, 9565558797749164794511360, 2007400581177856844629016576, 453192947995950052758954115072
Offset: 1
-
INVERT(A089835); INVERT([seq(A000108(n)*A000108(n)*(n+1)!,n=1..9)]);
a:= proc(n) option remember; local i; `if`(n<1, 1, add(a(n-i) *(2*i)!^2 /i!^3 /(i+1), i=1..n)) end: seq(a(n), n=1..20); # Alois P. Heinz, Apr 01 2009
-
a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i] *(2 i)!^2 /i!^3 /(i + 1), {i, 1, n}]]; Array[a, 20] (* Jean-François Alcover, Mar 03 2016, adapted from Maple *)
A000888
a(n) = (2*n)!^2 / ((n+1)!*n!^3).
Original entry on oeis.org
1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400, 21252802073091300, 302539888334593800, 4334635827016110000, 62464383654579522000, 904841214653480504400
Offset: 0
G.f.: 1 + 2*x + 12*x^2 + 100*x^3 + 980*x^4 + 10584*x^5 + 121968*x^6 + ...
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 93.
- T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan & Co., London, 1958, p. 177.
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Marco S. Bianchi, Protected and uniformly transcendental, arXiv:2306.06239 [hep-th], 2023.
- M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- David Callan, Bijections for the identity 4^n = ... .
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Helmut Prodinger, Two New Identities Involving the Catalan Numbers: A classical approach, arXiv:1911.07604 [math.CO], 2019.
- Ralf Steiner, Beispiele zur modifizierten Wallis-Lambert-Reihe, 2016.
-
[(Factorial(2*n))^2/(Factorial(n))^4/(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
-
[seq(binomial(2*n,n)^2/(n+1),n=0..17)]; # Zerinvary Lajos, May 27 2006
-
f[n_] := Binomial[2 n, n]^2/(n + 1); Array[f, 18, 0] (* Robert G. Wilson v *)
a[ n_] := SeriesCoefficient[ (1/8) (EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x]) / (Pi/2), {x, 0, n + 1}]; (* Michael Somos, Jan 23 2012 *)
-
{a(n) = if( n<0, 0, (2*n)!^2 / n!^4 / (n+1))}; /* Michael Somos, Sep 11 2005 */
Original entry on oeis.org
0, 1, 10, 115, 1666, 30198, 665148, 17296851, 518916970, 17643220738, 670442556004, 28158587998814, 1295295050441588, 64764752531737100, 3497296636751245560, 202843204931717665155, 12576278705767060962330
Offset: 0
A350266
Triangle read by rows. T(n, k) = binomial(n, k) * n! / (n - k + 1)! if k >= 1, if k = 0 then T(n, k) = k^n. T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 9, 6, 0, 4, 24, 48, 24, 0, 5, 50, 200, 300, 120, 0, 6, 90, 600, 1800, 2160, 720, 0, 7, 147, 1470, 7350, 17640, 17640, 5040, 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320, 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880
Offset: 0
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 2;
[3] 0, 3, 9, 6;
[4] 0, 4, 24, 48, 24;
[5] 0, 5, 50, 200, 300, 120;
[6] 0, 6, 90, 600, 1800, 2160, 720;
[7] 0, 7, 147, 1470, 7350, 17640, 17640, 5040;
[8] 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320;
[9] 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880;
-
T := (n, k) -> ifelse(k = 0, k^n, binomial(n, k)^2 * k! / (n - k + 1)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := Binomial[n, k]^2 * k!/(n - k + 1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 09 2022 *)
Showing 1-4 of 4 results.
Comments