Original entry on oeis.org
1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400, 21252802073091300
Offset: 0
A013709
a(n) = 4^(2*n+1).
Original entry on oeis.org
4, 64, 1024, 16384, 262144, 4194304, 67108864, 1073741824, 17179869184, 274877906944, 4398046511104, 70368744177664, 1125899906842624, 18014398509481984, 288230376151711744, 4611686018427387904, 73786976294838206464, 1180591620717411303424, 18889465931478580854784
Offset: 0
A005558
a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
Original entry on oeis.org
1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides for Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, Eur. J. Comb. 61, 242-275 (2017)
- Sergi Elizalde, The degree of symmetry of lattice paths, arXiv:2002.12874 [math.CO], 2020.
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6. See Column 1 of Figure 5.
- Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
-
[Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
-
A:= proc(n,x,y) option remember;
local j, xpyp, xp,yp, res;
xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]];
res:= 0;
for j from 1 to 4 do
xp:= xpyp[j,1];
yp:= xpyp[j,2];
if xp < 0 or xp > yp or xp + yp > n then next fi;
res:= res + procname(n-1,xp,yp)
od;
return res
end proc:
A(0,0,0) := 1:
seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
-
a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
-
a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))
-
from sympy import ceiling as c, binomial
def a(n):
return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017
A186420
a(n) = binomial(2n,n)^4.
Original entry on oeis.org
1, 16, 1296, 160000, 24010000, 4032758016, 728933458176, 138735983333376, 27435582641610000, 5588044012339360000, 1165183173971324375296, 247639903129149250277376, 53472066459540320483696896, 11701285507234585729600000000, 2589980371199606611713600000000
Offset: 0
G.f.: 4F3({1/2,1/2,1/2,1/2},{1,1,1},256x) where 4F3 is a hypergeometric series.
Cf.
A000108,
A000888,
A186414,
A186415,
A186416,
A186418,
A186419,
A000897,
A006480,
A008977,
A188662.
-
Table[Binomial[2n,n]^4,{n,0,20}]
Table[Coefficient[Series[HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 256 x], {x, 0, n}], x, n], {n, 0, 14}] (* Michael De Vlieger, Jul 13 2016 *)
-
makelist(binomial(2*n,n)^4,n,0,40);
A186415
a(n) = binomial(2n,n)^3/(n+1).
Original entry on oeis.org
1, 4, 72, 2000, 68600, 2667168, 112698432, 5053029696, 236860767000, 11493303192800, 573327757086656, 29253930349198464, 1521079361361956032, 80361335659444000000, 4304087536829486400000, 233271979857187430688000, 12774642558686527109607000, 706008965215713532853436000, 39337406606398593529683000000
Offset: 0
-
A186415 := proc(n) binomial(2*n,n)^3/(n+1) ; end proc: # R. J. Mathar, Feb 23 2011
-
Table[Binomial[2n,n]^3/(n+1),{n,0,40}]
-
makelist(binomial(2*n,n)^3/(n+1),n,0,40);
A186414
a(n) = binomial(2n,n)^3/(n+1)^2.
Original entry on oeis.org
1, 2, 24, 500, 13720, 444528, 16099776, 631628712, 26317863000, 1149330319280, 52120705189696, 2437827529099872, 117006104720150464, 5740095404246000000, 286939169121965760000, 14579498741074214418000
Offset: 0
-
[Binomial(2*n,n)^3/(n+1)^2: n in [0..50]]; // Vincenzo Librandi, Mar 27 2011
-
Table[Binomial[2n, n]^3/(n + 1)^2, {n, 0, 20}]
-
makelist(binomial(2*n,n)^3/(n+1)^2,n,0,40);
A125558
Central column of triangle A090181.
Original entry on oeis.org
1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220, 1551580888, 20734762776, 281248448936, 3863302870000, 53644719852000, 751920156592200, 10626401036545650, 151269944167296900, 2167317913508055000
Offset: 0
-
seq(ceil(1/2*(n+1)*((binomial(2*n,n)/(1+n))^2)), n=0..18); # Zerinvary Lajos, Jun 18 2007
-
CoefficientList[
Series[1 + (HypergeometricPFQ[{1/2, 1/2}, {2}, 16 x] - 1)/(2), {x, 0,
20}], x]
Join[{1},Table[CatalanNumber[n]^2 (n+1)/2,{n,20}]] (* Harvey P. Dale, Oct 19 2011 *)
A186416
a(n) = binomial(2n,n)^4/(n+1)^3.
Original entry on oeis.org
1, 2, 48, 2500, 192080, 18670176, 2125170432, 270968717448, 37634544090000, 5588044012339360, 875419364366134016, 143310129125665075392, 24338673855047938317568, 4264316875814353400000000, 767401591466550107174400000, 141345980472409642279275210000, 26569505644587874058090478570000
Offset: 0
-
A186416 := proc(n) binomial(2*n,n)^4/(n+1)^3 ; end proc: # R. J. Mathar, Feb 23 2011
-
Table[Binomial[2n,n]^4/(n+1)^3,{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1)^3,n,0,40);
A186229
Expansion of (2F1( (-(1/2), 1/6); (-2/3))( 16 x) -1)/(2*x).
Original entry on oeis.org
1, 14, 182, 2470, 34580, 494760, 7191690, 105793545, 1570873850, 23500272796, 353724885332, 5351515200668, 81313973049064, 1240116577389200, 18973783634054760, 291115203548084370, 4477664537437798980, 69023046543088792440, 1066084706728274263800, 16495237916832025427160, 255635559046076610807120
Offset: 0
-
CoefficientList[Series[(HypergeometricPFQ[{-(1/2), 1/6}, {-(2/3)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
FullSimplify[Table[-((2^(1/3 + 4 n) (-(4/3))! (-(1/2) + n)! (1/6 + n)!)/(Pi (-(2/3) + n)! (1 + n)!)), {n, 0, 20}]] (* Benedict W. J. Irwin, Jul 12 2016 *)
A186231
Expansion of ( 2F1([-1/4, 1/4]; [-1/2], 16*x) - 1 ) / (2*x).
Original entry on oeis.org
1, 15, 210, 3003, 43758, 646646, 9657700, 145422675, 2203961430, 33578000610, 513791607420, 7890371113950, 121548660036300, 1877405874732108, 29065024282889672, 450883717216034179, 7007092303604022630, 109069992321755544170, 1700179760011004467468, 26536589497469056215210, 414670662257153823494820
Offset: 0
-
CoefficientList[Series[(HypergeometricPFQ[{-(1/4), 1/4}, {-(1/2)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
Showing 1-10 of 17 results.
Comments