cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A151392 Duplicate of A000888.

Original entry on oeis.org

1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400, 21252802073091300
Offset: 0

Views

Author

Keywords

A013709 a(n) = 4^(2*n+1).

Original entry on oeis.org

4, 64, 1024, 16384, 262144, 4194304, 67108864, 1073741824, 17179869184, 274877906944, 4398046511104, 70368744177664, 1125899906842624, 18014398509481984, 288230376151711744, 4611686018427387904, 73786976294838206464, 1180591620717411303424, 18889465931478580854784
Offset: 0

Views

Author

Keywords

Comments

Also powers of 2 with singly even numbers (A016825) as exponents. - Alonso del Arte, Sep 03 2012
The partial sum of A000888(n) = Catalan(n)^2*(n + 1) resp. A267844(n) = Catalan(n)^2*(4n + 3) resp. A267987(n) = Catalan(n)^2*(4n + 4) divided by A013709(n) (this) a(n) = 2^(4n+2) absolutely converge to 1/Pi resp. 1 resp. 4/Pi. Thus this series is 1/Pi resp. 1 resp. 4/Pi. - Ralf Steiner, Jan 23 2016

Crossrefs

Programs

Formula

a(n) = 16*a(n-1), n > 0; a(0) = 4. G.f.: 4/(1 - 16*x). [Philippe Deléham, Nov 23 2008]
a(n) = 4^(2*n + 1) = 2^(4*n + 2). - Alonso del Arte, Sep 03 2012
a(n) = 4*A001025(n). - Michel Marcus, Jan 30 2016
From Elmo R. Oliveira, Aug 26 2024: (Start)
E.g.f.: 4*exp(16*x).
a(n) = A000302(A005408(n)). (End)

A005558 a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.

Original entry on oeis.org

1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000
Offset: 0

Views

Author

Keywords

Comments

Number of n-step walks that start at the origin, constrained to stay in the first octant (0 <= y <= x). (Conjectured) - Benjamin Phillabaum, Mar 11 2011, corrected by Robert Israel, Oct 07 2015
For n >= 1, a(n-1) is the number of Dyck Paths with semilength n having floor((n+2)/2) U's in odd numbered positions. Example: (U is in odd numbered position and u is in even numbered position) Dyck path with n=5, floor ((5+2)/2)=3: UuddUuUddd. - Roger Ford, May 27 2017
The ratio of the number of n-step walks on the octant with an equal number of North steps and South steps to the total number of n-step walks on the octant is A005817(n)/a(n). For the reduced ratio, if n is divisible by 4 or n-1 is divisible by 4 the ratio is 1:floor(n/4)+1 and for all other values of n the ratio is 2:floor(n/2)+2. Example n = 4: A005817(4) = 10; EEEE, EEEW, EEWE, EWEE, EWEW, EEWW, ENSE, ENES, ENSW, EENS; a(4) = 20; 10:20 reduces to 1:2. - Roger Ford, Nov 04 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A138350 for a signed version.
Bisections are A000891 and A000888/2.
Cf. A000108, A005817. Column y=0 of A052174.

Programs

  • Magma
    [Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
    
  • Maple
    A:= proc(n,x,y) option remember;
        local j, xpyp, xp,yp, res;
        xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]];
        res:= 0;
        for j from 1 to 4 do
          xp:= xpyp[j,1];
          yp:= xpyp[j,2];
          if xp < 0 or xp > yp or xp + yp > n then next fi;
          res:= res + procname(n-1,xp,yp)
        od;
    return res
    end proc:
    A(0,0,0) := 1:
    seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
  • Mathematica
    a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
  • PARI
    a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))
    
  • Python
    from sympy import ceiling as c, binomial
    def a(n):
        return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017

Formula

a(n) = C(n+1, ceiling(n/2))*C(n, floor(n/2)) - C(n+1, ceiling((n-1)/2))*C(n, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: (1/(4x^2))*((16*x^2-1)*(hypergeom([1/2, 1/2],[1],16*x^2)+2*x*(4*x-1)*hypergeom([3/2, 3/2],[2],16*x^2))-2*x+1). - Mark van Hoeij, Oct 13 2009
E.g.f (conjectured): BesselI(1,2*x)*(BesselI(0,2*x)+BesselI(1,2*x))/x. - Benjamin Phillabaum, Feb 25 2011
Conjecture: (2*n+1)*(n+3)*(n+2)*a(n) - 4*(2*n^2+4*n+3)*a(n-1) - 16*n*(2*n+3)*(n-1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017
Conjecture: (n+3)*(n+2)*a(n) - 4*(n^2+3*n+1)*a(n-1) + 16*(-n^2+n+1)*a(n-2) + 64*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} n!/(k!*k!*(floor(n/2)-k)!*(floor((n+1)/2)-k)!*(k+1)) (conjectured). - Roger Ford, Aug 04 2017
a(n) = A000108(floor((n+1)/2))*A000108(floor(n/2))*(2*(floor(n/2))+1). - Roger Ford, Nov 15 2019
a(n) = Product_{k=3..n} (4*floor((k-1)/2) + 2) / (floor((k+2)/2)). - Roger Ford, Apr 29 2024

A186420 a(n) = binomial(2n,n)^4.

Original entry on oeis.org

1, 16, 1296, 160000, 24010000, 4032758016, 728933458176, 138735983333376, 27435582641610000, 5588044012339360000, 1165183173971324375296, 247639903129149250277376, 53472066459540320483696896, 11701285507234585729600000000, 2589980371199606611713600000000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Examples

			G.f.: 4F3({1/2,1/2,1/2,1/2},{1,1,1},256x) where 4F3 is a hypergeometric series.
		

Crossrefs

Cf. binomial(2n,n)^k: A000984 (k=1), A002894 (k=2), A002897 (k=3), this sequence (k=4).

Programs

  • Mathematica
    Table[Binomial[2n,n]^4,{n,0,20}]
    Table[Coefficient[Series[HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 256 x], {x, 0, n}], x, n], {n, 0, 14}] (* Michael De Vlieger, Jul 13 2016 *)
  • Maxima
    makelist(binomial(2*n,n)^4,n,0,40);

Formula

a(n) = A000984(n)^4 = A002894(n)^2.
a(n) = binomial(2*n,n)^4 = ( [x^n](1 + x)^(2*n) )^4 = [x^n](F(x)^(16*n)), where F(x) = 1 + x + 25*x^2 + 1798*x^3 + 183442*x^4 + 22623769*x^5 + 3142959012*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977 and A188662. - Peter Bala, Jul 14 2016
a(n) ~ 256^n/(Pi*n)^2. - Ilya Gutkovskiy, Jul 13 2016

A186415 a(n) = binomial(2n,n)^3/(n+1).

Original entry on oeis.org

1, 4, 72, 2000, 68600, 2667168, 112698432, 5053029696, 236860767000, 11493303192800, 573327757086656, 29253930349198464, 1521079361361956032, 80361335659444000000, 4304087536829486400000, 233271979857187430688000, 12774642558686527109607000, 706008965215713532853436000, 39337406606398593529683000000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Maple
    A186415 := proc(n) binomial(2*n,n)^3/(n+1) ; end proc: # R. J. Mathar, Feb 23 2011
  • Mathematica
    Table[Binomial[2n,n]^3/(n+1),{n,0,40}]
  • Maxima
    makelist(binomial(2*n,n)^3/(n+1),n,0,40);

Formula

G.f.: 3F2(1/2,1/2,1/2;1,2;64x), where 3F2(.,.,.;.,.;.) is a generalized hypergeometric series.
a(n) = A000888(n)*A000984(n). - R. J. Mathar, Feb 23 2011
a(n) ~ 64^n/(Pi^(3/2)*n^(5/2)). - Ilya Gutkovskiy, Nov 01 2016

A186414 a(n) = binomial(2n,n)^3/(n+1)^2.

Original entry on oeis.org

1, 2, 24, 500, 13720, 444528, 16099776, 631628712, 26317863000, 1149330319280, 52120705189696, 2437827529099872, 117006104720150464, 5740095404246000000, 286939169121965760000, 14579498741074214418000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n,n)^3/(n+1)^2: n in [0..50]]; // Vincenzo Librandi, Mar 27 2011
  • Mathematica
    Table[Binomial[2n, n]^3/(n + 1)^2, {n, 0, 20}]
  • Maxima
    makelist(binomial(2*n,n)^3/(n+1)^2,n,0,40);
    

Formula

G.f.: 3F2({1/2, 1/2, 1/2}, {2, 2}, 64x), where 3F2 is a hypergeometric function.

A125558 Central column of triangle A090181.

Original entry on oeis.org

1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220, 1551580888, 20734762776, 281248448936, 3863302870000, 53644719852000, 751920156592200, 10626401036545650, 151269944167296900, 2167317913508055000
Offset: 0

Views

Author

Philippe Deléham, Jan 01 2007, Oct 11 2007

Keywords

Comments

[1,6,50,490,5292,...] is a column in triangle of Narayana numbers A001263.
Number of Dyck 2n-paths with exactly n peaks. - Peter Luschny, May 10 2014
For n > 0, number of pairs of non-intersecting lattice paths with steps (1,0), (0,1), where one path goes from (0,0) to (n,n) and the other from (1,0) to (n+1,n). The proof is by switching intersecting path pairs after their first intersection, giving a(n) = binomial(2*n,n)^2 - binomial(2*n+1,n) * binomial(2*n-1,n). - Jeremy Tan, Apr 12 2021

Crossrefs

Equals A000888(n)/2 for n>0.
Cf. A090181.

Programs

  • Maple
    seq(ceil(1/2*(n+1)*((binomial(2*n,n)/(1+n))^2)), n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    CoefficientList[
    Series[1 + (HypergeometricPFQ[{1/2, 1/2}, {2}, 16 x] - 1)/(2), {x, 0,
        20}], x]
    Join[{1},Table[CatalanNumber[n]^2 (n+1)/2,{n,20}]] (* Harvey P. Dale, Oct 19 2011 *)

Formula

a(0)=1, a(n) = Catalan(n)^2*(n+1)/2 = A000108(n)^2*(n+1)/2 for n>0.
a(n) = A090181(2*n, n).
G.f.: 1 + x*3F2( 1, 3/2, 3/2; 2, 3;16 x) = 1 + ( 2F1( 1/2, 1/2; 2;16*x) - 1)/2. - Olivier Gérard, Feb 16 2011
D-finite with recurrence n*(n+1)*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = binomial(2*n,n)^2 - binomial(2*n+1,n) * binomial(2*n-1,n). - Jeremy Tan, Apr 12 2021

A186416 a(n) = binomial(2n,n)^4/(n+1)^3.

Original entry on oeis.org

1, 2, 48, 2500, 192080, 18670176, 2125170432, 270968717448, 37634544090000, 5588044012339360, 875419364366134016, 143310129125665075392, 24338673855047938317568, 4264316875814353400000000, 767401591466550107174400000, 141345980472409642279275210000, 26569505644587874058090478570000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Maple
    A186416 := proc(n) binomial(2*n,n)^4/(n+1)^3 ; end proc: # R. J. Mathar, Feb 23 2011
  • Mathematica
    Table[Binomial[2n,n]^4/(n+1)^3,{n,0,40}]
  • Maxima
    makelist(binomial(2*n,n)^4/(n+1)^3,n,0,40);

Formula

G.f.: 4F3(1/2,1/2,1/2,1/2;2,2,2;256*x), where nFm(...;..;.) denotes a generalized hypergeometric series.
a(n) = (A000108(n))^3*A000984(n). - R. J. Mathar, Feb 23 2011

A186229 Expansion of (2F1( (-(1/2), 1/6); (-2/3))( 16 x) -1)/(2*x).

Original entry on oeis.org

1, 14, 182, 2470, 34580, 494760, 7191690, 105793545, 1570873850, 23500272796, 353724885332, 5351515200668, 81313973049064, 1240116577389200, 18973783634054760, 291115203548084370, 4477664537437798980, 69023046543088792440, 1066084706728274263800, 16495237916832025427160, 255635559046076610807120
Offset: 0

Views

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Combinatorial interpretation welcome.
Probably a class of paths (Cf. A135404, A000888)

Programs

  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{-(1/2), 1/6}, {-(2/3)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
    FullSimplify[Table[-((2^(1/3 + 4 n) (-(4/3))! (-(1/2) + n)! (1/6 + n)!)/(Pi (-(2/3) + n)! (1 + n)!)), {n, 0, 20}]] (* Benedict W. J. Irwin, Jul 12 2016 *)

Formula

D-finite with recurrence (n+1)*(3n-2)*a(n) = 4*(6n+1)*(2n-1)*a(n-1). - R. J. Mathar, Jul 11 2012
a(n) ~ 3*GAMMA(2/3)*2^(1/3) * 16^n/(Pi*n^(2/3)). - Vaclav Kotesovec, Aug 13 2013
a(n) = -2^(1/3+4*n)*(-4/3)!*(-1/2+n)!*(1/6+n)!/(Pi*(-2/3+n)!*(1+n)!). - Benedict W. J. Irwin, Jul 12 2016

A186231 Expansion of ( 2F1([-1/4, 1/4]; [-1/2], 16*x) - 1 ) / (2*x).

Original entry on oeis.org

1, 15, 210, 3003, 43758, 646646, 9657700, 145422675, 2203961430, 33578000610, 513791607420, 7890371113950, 121548660036300, 1877405874732108, 29065024282889672, 450883717216034179, 7007092303604022630, 109069992321755544170, 1700179760011004467468, 26536589497469056215210, 414670662257153823494820
Offset: 0

Views

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Combinatorial interpretation welcome.
Probably a class of paths (Cf. A135404, A000888).
Number of North-East lattice paths from (0,0) to (n,n+1). - Michael D. Weiner, Apr 14 2017

Crossrefs

Cf. A186229.

Programs

  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{-(1/4), 1/4}, {-(1/2)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]

Formula

a(n) = A001791(2n+1). - R. J. Mathar, Jul 10 2012
D-finite with recurrence -(n+1)*(2*n-1)*a(n) +2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Apr 26 2017
Showing 1-10 of 17 results. Next