cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A091567 Primes p such that p^2-p-1 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 29, 31, 47, 61, 67, 71, 97, 101, 127, 131, 139, 149, 181, 197, 241, 269, 307, 331, 359, 379, 397, 409, 419, 421, 449, 457, 479, 487, 491, 599, 607, 617, 619, 641, 647, 677, 709, 751, 787, 839, 857, 907, 947, 967, 977, 997, 1051, 1061, 1091
Offset: 1

Views

Author

T. D. Noe, Jan 21 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A053182 (p^2+p+1 prime), A053184 (p^2+p-1 prime), A065508 (p^2-p+1 prime).
Cf. A091568 (corresponding primes of the form p^2-p-1).

Programs

A237642 Primes of the form n^2-n-1 (for some n) such that p^2-p-1 is also prime.

Original entry on oeis.org

5, 11, 29, 71, 131, 181, 379, 419, 599, 1979, 2069, 3191, 4159, 13339, 14519, 17291, 19739, 20879, 21169, 26731, 30449, 31151, 39799, 48619, 69959, 70489, 112559, 122849, 132859, 139501, 149381, 183611, 186191, 198469, 212981, 222311, 236681
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

Except a(1), all numbers are congruent to 1 mod 10 or 9 mod 10.

Examples

			11 is prime and equals 4^2-4-1, and 11^2-11-1 = 109 is prime. So, 11 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2-n-1,{n,500}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    s=[]; for(n=1, 1000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**2-n-1) for n in range(10**3) if isprime(n**2-n-1) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
    

A119534 Largest prime divisor of numerator of the n-th Artin's product.

Original entry on oeis.org

5, 19, 41, 109, 109, 271, 271, 271, 811, 929, 929, 929, 929, 2161, 2161, 2161, 3659, 4421, 4969, 4969, 4969, 4969, 4969, 9311, 10099, 10099, 10099, 10099, 10099, 16001, 17029, 17029, 19181, 22051, 22051, 22051, 22051, 22051, 22051, 22051, 32579
Offset: 2

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]],{n,2,100}]

Formula

a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].

A237641 Primes p of the form n^2-n-1 (for prime n) such that p^2-p-1 is also prime.

Original entry on oeis.org

5, 236681, 380071, 457651, 563249, 1441199, 1660231, 2491661, 3050261, 4106701, 5137021, 5146091, 5329171, 10617821, 15574861, 19860391, 20852921, 21349019, 21497131, 23025601, 24507449, 32495699, 36342811, 48867089, 51129649, 59082281
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

Except a(1), all numbers are congruent to 1 mod 10 or 9 mod 10.
These are the primes in the sequence A237527.

Examples

			5 = 3^2-3^1-1 (3 is prime) and 5^2-5-1 = 19 is prime. Since 5 is prime too, 5 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2-n-1,{n,Prime[Range[1000]]}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Aug 14 2024 *)
  • PARI
    s=[]; forprime(n=2, 40000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
  • Python
    import sympy
    from sympy import isprime
    def poly2(x):
      if isprime(x):
        f = x**2-x-1
        if isprime(f**2-f-1):
          return True
      return False
    x = 1
    while x < 10**5:
      if poly2(x):
        if isprime(x**2-x-1):
          print(x**2-x-1)
      x += 1
    

A306190 a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.

Original entry on oeis.org

1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
Offset: 1

Views

Author

Kritsada Moomuang, Jan 28 2019

Keywords

Comments

Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).

Examples

			a(3) = 19 because 5^2 - 5 - 1 = 19.
		

Crossrefs

Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.

Programs

  • Maple
    map(p -> p^2-p-1, [seq(ithprime(i),i=1..100)]); # Robert Israel, Mar 11 2019
  • Mathematica
    Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
  • PARI
    a(n) = {p=prime(n);p^2-p-1;} \\ Jinyuan Wang, Feb 02 2019

Formula

a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024

A136241 Numbers n among A006093 such that n^2 + n - 1 is prime.

Original entry on oeis.org

2, 4, 6, 10, 16, 28, 30, 46, 60, 66, 70, 96, 100, 126, 130, 138, 148, 180, 196, 240, 268, 306, 330, 358, 378, 396, 408, 418, 420, 448, 456, 478, 486, 490, 598, 606, 616, 618, 640, 646, 676, 708, 750, 786, 838, 856, 906, 946, 966, 976, 996, 1050, 1060, 1090
Offset: 1

Views

Author

Lekraj Beedassy, Dec 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]-1,PrimeQ[#^2+#-1]&] (* Harvey P. Dale, Jan 20 2019 *)

Formula

a(n) = A091567(n) - 1.

A119609 p^2-p-1 that is not prime, where p is prime.

Original entry on oeis.org

1, 155, 341, 505, 1331, 1639, 1805, 2755, 3421, 5255, 6161, 6805, 7831, 10505, 11341, 11771, 12655, 18631, 22649, 24491, 26405, 27721, 29755, 31861, 36289, 37055, 39401, 44309, 49505, 51301, 52211, 54055, 56881, 62749, 65791, 68905, 73169
Offset: 1

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Comments

All prime factors of a(n) {5,11,19,29,31,41,59,61,..} belong to A038872 Primes congruent to {0, 1, 4} mod 5. Also odd primes where 5 is a square mod p. A091568 Primes of the form p^2-p-1, where p is prime. A091567 Primes p such that p^2-p-1 is prime.

Crossrefs

Programs

  • Magma
    [q: p in PrimesUpTo(300) | IsPrime(p) and not IsPrime(q) where q is p^2 - p - 1] // Vincenzo Librandi, Sep 08 2012
  • Mathematica
    lst = {}; Do[If[PrimeQ[p] && ! PrimeQ[p^2 - p - 1], AppendTo[lst, p^2 - p -1]], {p, 300}]; lst (* Vincenzo Librandi, Sep 08 2012 *)

A290817 Primes of at least one of the forms p^2 +- p +- 1, where p is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 31, 41, 43, 109, 131, 157, 181, 271, 307, 379, 811, 929, 991, 1721, 1723, 2161, 2861, 3539, 3541, 3659, 4421, 4423, 4969, 5113, 6163, 6971, 8009, 8011, 9311, 10099, 10301, 10303, 10711, 16001, 17029, 17291, 17293, 19181, 19183, 22051, 22349, 22651
Offset: 1

Views

Author

Ralf Steiner, Aug 11 2017

Keywords

Comments

This sequence contains prime chains and prime trees using an appropriate mapping form p^2 +- p +- 1 in each step, such as the chain: 3 -> 5 -> 19 -> 379 -> 143263 -> 20524143907 and the tree: 41 -> {1721, 1723}.

Crossrefs

Programs

  • Magma
    {p^2+(-1)^k*p+(-1)^s:p in PrimesUpTo(150), s,k in [1..2]|IsPrime(p^2+(-1)^k*p+(-1)^s)}; //  Marius A. Burtea, Nov 28 2019
  • Maple
    select(isprime, [3,seq(op([p^2-p-1,p^2-p+1,p^2+p-1,p^2+p+1]),p=select(isprime,[seq(i,i=3..1000,2)]))]); # Robert Israel, Nov 27 2019
  • Mathematica
    Select[Union[Flatten[{(#^2 + # + 1 ), (#^2 + # - 1 ), (#^2 - # + 1 ), (#^2 - # - 1 )}] &[Prime[Range[100]]]], (PrimeQ[#]) &]

A119570 Primes p such that p^2 - p - 1 is not prime.

Original entry on oeis.org

2, 13, 19, 23, 37, 41, 43, 53, 59, 73, 79, 83, 89, 103, 107, 109, 113, 137, 151, 157, 163, 167, 173, 179, 191, 193, 199, 211, 223, 227, 229, 233, 239, 251, 257, 263, 271, 277, 281, 283, 293, 311, 313, 317, 337, 347, 349, 353, 367, 373, 383, 389, 401, 431, 433
Offset: 1

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Crossrefs

Cf. A091567 (Primes p such that p^2-p-1 is prime),
A091568 (Primes of the form p^2-p-1, where p is prime).

Programs

  • Magma
    [p: p in PrimesUpTo(700)| not IsPrime(p^2-p-1)] // Vincenzo Librandi, Jan 29 2011
  • Mathematica
    Select[Prime[Range[250]], Not[PrimeQ[ #^2-#-1]]&]

A119964 Numerator of the n-th Artin product.

Original entry on oeis.org

1, 5, 19, 779, 84911, 2632241, 713337311, 1163866139, 587752400195, 476667196558145, 2856927907113011, 345688276760674331, 13819099649042566549, 4988694973304366524189, 10780569837310736058772429
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}].

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]],{n,1,20}]

Formula

a(n) = Numerator[ Product[ 1 - 1/(Prime[k]*(Prime[k]-1)), {k,1,n}]].
Showing 1-10 of 11 results. Next