cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A053182 Primes p such that p^2 + p + 1 is prime.

Original entry on oeis.org

2, 3, 5, 17, 41, 59, 71, 89, 101, 131, 167, 173, 293, 383, 677, 701, 743, 761, 773, 827, 839, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1931, 1973, 2129, 2273, 2309, 2339, 2411, 2663, 2729, 2789, 2957
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Roger Horn computed the first 776 terms of this sequence around 1961 to test (with Paul Bateman) their conjecture on the density of simultaneous primes in polynomials. - Charles R Greathouse IV, Apr 05 2011
Starting with a(3)=5 all terms are of the form 6k-1, k in A147683. - Zak Seidov, Nov 10 2008
Primes p such that the sum of divisors of p^2 (sigma(p^2) = A000203(p^2) = p^2+p+1) is prime. - Claudio Meller, Apr 07 2011
The generated prime numbers p^2 + p + 1 are exactly A053183. - Bernard Schott, Dec 20 2012
Positive squarefree k such that the sum of divisors of k^2 is prime. - Peter Munn, Feb 02 2018

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p+1)]; // Vincenzo Librandi, Aug 06 2010
  • Mathematica
    Select[Prime[Range[427]], PrimeQ[#^2+#+1]&] (* Bruno Berselli, Nov 08 2011 *)
  • PARI
    isA053182(n)=isprime(n) && isprime(n^2+n+1)  \\ Michael B. Porter, Apr 23 2010
    
  • PARI
    c=0; forprime(p=1,default(primelimit), isprime(p^2+p+1) & write("/tmp/b053182.txt",c++," "p))  \\ M. F. Hasler, Apr 07 2011
    

Extensions

List changed to cross-reference by Franklin T. Adams-Watters, May 12 2010

A053184 Primes p such that p^2+p-1 is prime.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 31, 41, 53, 59, 83, 89, 101, 103, 131, 149, 163, 181, 191, 193, 199, 233, 241, 263, 281, 331, 349, 373, 401, 419, 431, 433, 449, 461, 463, 499, 541, 569, 571, 659, 673, 683, 691, 709, 739, 743, 761, 769, 809, 863, 881, 941, 1013, 1039
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Crossrefs

Programs

A065508 Primes p such that p^2 - p + 1 is prime.

Original entry on oeis.org

2, 3, 7, 13, 67, 79, 139, 151, 163, 193, 337, 349, 379, 457, 541, 613, 643, 727, 769, 919, 991, 1021, 1093, 1117, 1201, 1231, 1381, 1423, 1549, 1567, 1597, 1621, 1693, 1747, 1789, 1801, 1933, 1987, 2011, 2017, 2113, 2137, 2143, 2239, 2281, 2557, 2647
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2001

Keywords

Comments

The primes p^2 - p + 1 are in A074268.

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n) and IsPrime(n^2 - n + 1)] // Vincenzo Librandi, Aug 07 2010
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[#^2-#+1]&] (* Harvey P. Dale, Oct 06 2015 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^2 - p + 1), write("b065508.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 20 2009
    

A091568 Primes of the form p^2 - p - 1, where p is prime.

Original entry on oeis.org

5, 19, 41, 109, 271, 811, 929, 2161, 3659, 4421, 4969, 9311, 10099, 16001, 17029, 19181, 22051, 32579, 38611, 57839, 72091, 93941, 109229, 128521, 143261, 157211, 166871, 175141, 176819, 201151, 208391, 228961, 236681, 240589, 358201, 367841
Offset: 1

Views

Author

T. D. Noe, Jan 21 2004

Keywords

Crossrefs

Cf. A091567 (p such that p^2 - p - 1 is prime).

Programs

A154939 Primes p such that (p-1)*(p+1)-+p are primes.

Original entry on oeis.org

3, 5, 11, 31, 101, 131, 149, 181, 241, 331, 419, 449, 709, 1051, 1061, 1171, 1409, 1549, 1579, 1699, 1759, 1831, 2069, 3229, 3449, 3761, 3911, 4159, 4951, 5821, 6029, 6481, 6661, 6679, 6899, 7079, 7151, 7229, 7369, 8101, 8219, 8629, 8861, 9091, 9161, 9521
Offset: 1

Views

Author

Keywords

Comments

That is, primes p such that p^2+p-1 and p^2-p-1 are both primes: intersection of A053184 and A091567. - Michel Marcus, Jul 10 2016

Examples

			2*4=8-+3 -> primes, 4*6=24-+5 -> primes,...
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p-1) and IsPrime(p^2-p-1)]; // Vincenzo Librandi, Jul 10 2016
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]], And@@PrimeQ/@{#^2 - # - 1, #^2 + # - 1} &] (* Vincenzo Librandi, Jul 10 2016 *)
    Select[Prime[Range[1500]],AllTrue[(#-1)(#+1)+{#,-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A119534 Largest prime divisor of numerator of the n-th Artin's product.

Original entry on oeis.org

5, 19, 41, 109, 109, 271, 271, 271, 811, 929, 929, 929, 929, 2161, 2161, 2161, 3659, 4421, 4969, 4969, 4969, 4969, 4969, 9311, 10099, 10099, 10099, 10099, 10099, 16001, 17029, 17029, 19181, 22051, 22051, 22051, 22051, 22051, 22051, 22051, 32579
Offset: 2

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]],{n,2,100}]

Formula

a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].

A237641 Primes p of the form n^2-n-1 (for prime n) such that p^2-p-1 is also prime.

Original entry on oeis.org

5, 236681, 380071, 457651, 563249, 1441199, 1660231, 2491661, 3050261, 4106701, 5137021, 5146091, 5329171, 10617821, 15574861, 19860391, 20852921, 21349019, 21497131, 23025601, 24507449, 32495699, 36342811, 48867089, 51129649, 59082281
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

Except a(1), all numbers are congruent to 1 mod 10 or 9 mod 10.
These are the primes in the sequence A237527.

Examples

			5 = 3^2-3^1-1 (3 is prime) and 5^2-5-1 = 19 is prime. Since 5 is prime too, 5 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2-n-1,{n,Prime[Range[1000]]}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Aug 14 2024 *)
  • PARI
    s=[]; forprime(n=2, 40000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
  • Python
    import sympy
    from sympy import isprime
    def poly2(x):
      if isprime(x):
        f = x**2-x-1
        if isprime(f**2-f-1):
          return True
      return False
    x = 1
    while x < 10**5:
      if poly2(x):
        if isprime(x**2-x-1):
          print(x**2-x-1)
      x += 1
    

A136241 Numbers n among A006093 such that n^2 + n - 1 is prime.

Original entry on oeis.org

2, 4, 6, 10, 16, 28, 30, 46, 60, 66, 70, 96, 100, 126, 130, 138, 148, 180, 196, 240, 268, 306, 330, 358, 378, 396, 408, 418, 420, 448, 456, 478, 486, 490, 598, 606, 616, 618, 640, 646, 676, 708, 750, 786, 838, 856, 906, 946, 966, 976, 996, 1050, 1060, 1090
Offset: 1

Views

Author

Lekraj Beedassy, Dec 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]-1,PrimeQ[#^2+#-1]&] (* Harvey P. Dale, Jan 20 2019 *)

Formula

a(n) = A091567(n) - 1.

A243471 Primes p such that p^6 - p^5 + 1 is prime.

Original entry on oeis.org

3, 31, 73, 181, 367, 373, 523, 631, 733, 1021, 1039, 1171, 1489, 1723, 1777, 2203, 2557, 2683, 3121, 3187, 3319, 4441, 4591, 4621, 4801, 4957, 5113, 5167, 5323, 5431, 5659, 5839, 5851, 5857, 6883, 7057, 7129, 7297, 7309, 7477, 7993, 8017, 8209, 8221, 8689, 8821
Offset: 1

Views

Author

K. D. Bajpai, Jun 05 2014

Keywords

Examples

			31 appears in the sequence because it is prime and 31^6 - 31^5  + 1 = 858874531 is also prime.
73 appears in the sequence because it is prime and 73^6 - 73^5  + 1 = 149261154697 is also prime.
		

Crossrefs

Programs

  • Maple
    A243471 := proc() local a, b; a:=ithprime(n); b:= a^6-a^5+1; if isprime (b) then RETURN (a); fi; end: seq(A243471 (), n=1..2000);
  • Mathematica
    c=0; Do[k=Prime[n]; If[PrimeQ[k^6-k^5+1], c++; Print[c," ",k]], {n,1,200000}];

A243472 Primes p such that p^6 - p^5 - 1 is prime.

Original entry on oeis.org

2, 31, 101, 151, 181, 199, 229, 277, 307, 317, 379, 439, 479, 491, 647, 691, 797, 911, 997, 1039, 1051, 1181, 1291, 1367, 1381, 1471, 1511, 1549, 1657, 1709, 1847, 1867, 1987, 2081, 2099, 2111, 2207, 2467, 2621, 2707, 3041, 3221, 3259, 3541, 3571, 3581, 3769
Offset: 1

Views

Author

K. D. Bajpai, Jun 05 2014

Keywords

Examples

			31 appears in the sequence because it is prime and 31^6 - 31^5 - 1 = 858874529 is also prime.
101 appears in the sequence because it is prime and 101^6 - 101^5  - 1 = 1051010050099 is also prime.
		

Crossrefs

Programs

  • Maple
    A243472 := proc() local a, b; a:=ithprime(n); b:= a^6-a^5-1; if isprime (b) then RETURN (a); fi; end: seq(A243472 (), n=1..2000);
  • Mathematica
    c = 0;  Do[k=Prime[n]; If[PrimeQ[k^6-k^5-1], c++; Print[c," ",k]], {n,1,200000}];
    Select[Prime[Range[600]],PrimeQ[#^6-#^5-1]&] (* Harvey P. Dale, Jan 21 2015 *)
  • PARI
    s=[]; forprime(p=2, 4000, if(isprime(p^6-p^5-1), s=concat(s, p))); s \\ Colin Barker, Jun 06 2014
Showing 1-10 of 20 results. Next