cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A238399 a(n) is the number of primes occurring between A053182(n) and A053183(n) (excluding the endpoints).

Original entry on oeis.org

2, 3, 7, 55, 255, 478, 663, 984, 1237, 1955, 3021, 3214, 8312, 13519, 38267, 40805, 45400, 47444, 48835, 55269, 56758, 59032, 66067, 92141, 93063, 103620, 106611, 108602, 112713, 140874, 151335, 163314, 178215, 183330, 211350, 235410, 244165, 265160, 275971
Offset: 1

Views

Author

Torlach Rush, Feb 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (PrimePi[#^2 + #] - PrimePi[#]) & /@  Select[Prime@Range@500, PrimeQ[#^2 + # + 1] &] (* Giovanni Resta, Feb 27 2014 *)

Extensions

a(33)-a(39) from Giovanni Resta, Feb 27 2014

A147683 Numbers n with property that 6n-1 is in A053182.

Original entry on oeis.org

1, 3, 7, 10, 12, 15, 17, 22, 28, 29, 49, 64, 113, 117, 124, 127, 129, 138, 140, 143, 152, 182, 183, 194, 197, 199, 203, 229, 238, 248, 260, 264, 285, 302, 308, 322, 329, 355, 379, 385, 390, 402, 444, 455, 465, 493, 495, 502, 507, 523, 537, 542, 568, 575, 582
Offset: 1

Views

Author

Zak Seidov, Nov 10 2008

Keywords

Crossrefs

Cf. A053182.

Programs

  • PARI
    isok(n) = isprime(p=6*n-1) && isprime(p^2+p+1); \\ Michel Marcus, Oct 15 2013

A053184 Primes p such that p^2+p-1 is prime.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 31, 41, 53, 59, 83, 89, 101, 103, 131, 149, 163, 181, 191, 193, 199, 233, 241, 263, 281, 331, 349, 373, 401, 419, 431, 433, 449, 461, 463, 499, 541, 569, 571, 659, 673, 683, 691, 709, 739, 743, 761, 769, 809, 863, 881, 941, 1013, 1039
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Crossrefs

Programs

A091567 Primes p such that p^2-p-1 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 29, 31, 47, 61, 67, 71, 97, 101, 127, 131, 139, 149, 181, 197, 241, 269, 307, 331, 359, 379, 397, 409, 419, 421, 449, 457, 479, 487, 491, 599, 607, 617, 619, 641, 647, 677, 709, 751, 787, 839, 857, 907, 947, 967, 977, 997, 1051, 1061, 1091
Offset: 1

Views

Author

T. D. Noe, Jan 21 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A053182 (p^2+p+1 prime), A053184 (p^2+p-1 prime), A065508 (p^2-p+1 prime).
Cf. A091568 (corresponding primes of the form p^2-p-1).

Programs

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.

A065508 Primes p such that p^2 - p + 1 is prime.

Original entry on oeis.org

2, 3, 7, 13, 67, 79, 139, 151, 163, 193, 337, 349, 379, 457, 541, 613, 643, 727, 769, 919, 991, 1021, 1093, 1117, 1201, 1231, 1381, 1423, 1549, 1567, 1597, 1621, 1693, 1747, 1789, 1801, 1933, 1987, 2011, 2017, 2113, 2137, 2143, 2239, 2281, 2557, 2647
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2001

Keywords

Comments

The primes p^2 - p + 1 are in A074268.

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n) and IsPrime(n^2 - n + 1)] // Vincenzo Librandi, Aug 07 2010
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[#^2-#+1]&] (* Harvey P. Dale, Oct 06 2015 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^2 - p + 1), write("b065508.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 20 2009
    

A055638 Numbers k for which sigma(k^2) is prime.

Original entry on oeis.org

2, 3, 4, 5, 8, 17, 27, 41, 49, 59, 64, 71, 89, 101, 125, 131, 167, 169, 173, 256, 289, 293, 383, 512, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931
Offset: 1

Views

Author

Robert G. Wilson v, Jun 07 2000

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).
If sigma(x) is prime, then x=2 or x=p^(2m), an even power of a prime, cf. A023194. This sequence lists the values n = p^m such that sigma(n^2) is prime, i.e., sqrt( A023194 \ {2} ). The corresponding primes sigma(n^2)=A062700(n) are 1+p+...+p^(2m) = (p^(2m+1)-1)/(p-1), and any prime of that form (cf. A023195) corresponds to a term p^m is in this sequence. - M. F. Hasler, Oct 14 2014
This is a subsequence of A000961, see A248963 for its complement therein. - M. F. Hasler, Oct 19 2014
a(n) nearly always has digitsum of the form 2 mod 3. Specifically, 99.8% of the first 33733 entries examined conformed. The first exceptions are 3, 4, 27, 49, 64, 169, 256, 289, 529, 729. The exceptions (examined) appear to be integer powers themselves excepting the initial 3. Similarly, except for the initial 3, all entries of A023195 appear to have digitsum = 1 mod 3. - Bill McEachen, Mar 05 2017, Mar 20 2025
Number of terms < 10^k: 5, 13, 36, 137, 735, 4730, 33732, 253393, ..., . Robert G. Wilson v, Mar 09 2017
Primes in the sequence are A053182. - Thomas Ordowski, Nov 18 2017

Crossrefs

Cf. A023194 (sigma(n) is prime).
Cf. A023195 (primes of the form sigma(n)), A062700 (in order of appearance).

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(SumOfDivisors(n^2))]; // Vincenzo Librandi, Oct 18 2014
  • Mathematica
    Select[Range[2000], PrimeQ[DivisorSigma[1, #^2]] &]
  • PARI
    for(n=1,9999,isprime(sigma(n^2))&&print1(n",")) \\ M. F. Hasler, Oct 18 2014
    

Formula

a(n) = sqrt(A023194(n+1)).
Equal to A000961 \ A248963. - M. F. Hasler, Oct 19 2014

Extensions

Minor edits by M. F. Hasler, Oct 18 2014

A348749 Odd numbers k for which A064989(sigma(k)) > A064989(k), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.

Original entry on oeis.org

9, 25, 45, 49, 75, 81, 117, 121, 225, 243, 289, 325, 333, 405, 441, 529, 549, 605, 625, 657, 675, 729, 841, 925, 1053, 1089, 1125, 1215, 1225, 1413, 1445, 1521, 1525, 1575, 1665, 1681, 1737, 1825, 1875, 2025, 2205, 2401, 2475, 2493, 2601, 2817, 2825, 2925, 2997, 3025, 3033, 3125, 3249, 3481, 3573, 3645, 3675, 3789
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Sequence obtained when A003961 is applied to A348739 and the terms are sorted into ascending order.
From Robert Israel, Nov 12 2024: (Start)
If a and b are terms and are coprime, then a * b is a term.
If p > 2 is in A053182, Legendre's conjecture implies p^2 is in this sequence. (End)

Crossrefs

Cf. A000203, A003961, A053182, A064989, A326042, A348739, A348748, A348939 (terms of A228058 that occur here).
Cf. also A348742, A348754.

Programs

  • Maple
    g:= prevprime: g(2):= 1:
    f:= proc(n) local F,t;
      F:= ifactors(n)[2];
      mul(g(t[1])^t[2],t=F)
    end proc:
    select(t -> f(numtheory:-sigma(t)) > f(t), [seq(i,i=1..4000,2)]); # Robert Israel, Nov 12 2024
  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 4000, 2], s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA348749(n) = ((n%2)&&(A064989(sigma(n)) > A064989(n)));

A065405 Composite numbers k such that the sum of the divisors of k^2 is a prime.

Original entry on oeis.org

4, 8, 27, 49, 64, 125, 169, 256, 289, 512, 529, 729, 841, 1849, 2197, 3125, 4913, 5329, 6241, 6889, 15625, 16129, 29791, 32768, 37249, 51529, 57121, 69169, 76729, 113569, 117649, 128881, 139129, 157609, 192721, 208849, 226981, 229441, 253009
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

All these composite numbers k should be prime powers because if k=a*b with gcd(a,b)=1, then sigma(aabb) = sigma(aa)*sigma(bb) cannot be a prime; 46 of the 236 prime powers below 1000000 are here.

Crossrefs

Programs

  • Mathematica
    Select[ Range[3 10^5], ! PrimeQ[ # ] && PrimeQ[ DivisorSigma[1, #^2]] & ]
  • PARI
    isok(k) = { !isprime(k) && isprime(sigma(k^2)) } \\ Harry J. Smith, Oct 18 2009

Formula

sigma(a(n)^2) = sigma(A065404(n)) = A065403(n) is prime.

A185632 Primes of the form n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

3, 43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
Offset: 1

Views

Author

Bernard Schott, Dec 18 2012

Keywords

Comments

These are the primes associated with A182253.
All these numbers are in A002383 but not in A053183.
All the numbers n^2 + n + 1 = 111_n with n >= 2 are by definition Brazilian numbers: A125134. See Links: "Les nombres brésiliens" - Section V.5 page 35.

Crossrefs

Programs

  • Mathematica
    Select[Table[If[PrimeQ[n],Nothing,n^2+n+1],{n,200}],PrimeQ] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (! isprime(n) && isprime(p = n^2 + n + 1), print1(p, ", ");););} \\ Michel Marcus, Sep 04 2013
Showing 1-10 of 38 results. Next