cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A053182 Primes p such that p^2 + p + 1 is prime.

Original entry on oeis.org

2, 3, 5, 17, 41, 59, 71, 89, 101, 131, 167, 173, 293, 383, 677, 701, 743, 761, 773, 827, 839, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1931, 1973, 2129, 2273, 2309, 2339, 2411, 2663, 2729, 2789, 2957
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Roger Horn computed the first 776 terms of this sequence around 1961 to test (with Paul Bateman) their conjecture on the density of simultaneous primes in polynomials. - Charles R Greathouse IV, Apr 05 2011
Starting with a(3)=5 all terms are of the form 6k-1, k in A147683. - Zak Seidov, Nov 10 2008
Primes p such that the sum of divisors of p^2 (sigma(p^2) = A000203(p^2) = p^2+p+1) is prime. - Claudio Meller, Apr 07 2011
The generated prime numbers p^2 + p + 1 are exactly A053183. - Bernard Schott, Dec 20 2012
Positive squarefree k such that the sum of divisors of k^2 is prime. - Peter Munn, Feb 02 2018

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p+1)]; // Vincenzo Librandi, Aug 06 2010
  • Mathematica
    Select[Prime[Range[427]], PrimeQ[#^2+#+1]&] (* Bruno Berselli, Nov 08 2011 *)
  • PARI
    isA053182(n)=isprime(n) && isprime(n^2+n+1)  \\ Michael B. Porter, Apr 23 2010
    
  • PARI
    c=0; forprime(p=1,default(primelimit), isprime(p^2+p+1) & write("/tmp/b053182.txt",c++," "p))  \\ M. F. Hasler, Apr 07 2011
    

Extensions

List changed to cross-reference by Franklin T. Adams-Watters, May 12 2010

A091567 Primes p such that p^2-p-1 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 29, 31, 47, 61, 67, 71, 97, 101, 127, 131, 139, 149, 181, 197, 241, 269, 307, 331, 359, 379, 397, 409, 419, 421, 449, 457, 479, 487, 491, 599, 607, 617, 619, 641, 647, 677, 709, 751, 787, 839, 857, 907, 947, 967, 977, 997, 1051, 1061, 1091
Offset: 1

Views

Author

T. D. Noe, Jan 21 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A053182 (p^2+p+1 prime), A053184 (p^2+p-1 prime), A065508 (p^2-p+1 prime).
Cf. A091568 (corresponding primes of the form p^2-p-1).

Programs

A065508 Primes p such that p^2 - p + 1 is prime.

Original entry on oeis.org

2, 3, 7, 13, 67, 79, 139, 151, 163, 193, 337, 349, 379, 457, 541, 613, 643, 727, 769, 919, 991, 1021, 1093, 1117, 1201, 1231, 1381, 1423, 1549, 1567, 1597, 1621, 1693, 1747, 1789, 1801, 1933, 1987, 2011, 2017, 2113, 2137, 2143, 2239, 2281, 2557, 2647
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2001

Keywords

Comments

The primes p^2 - p + 1 are in A074268.

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n) and IsPrime(n^2 - n + 1)] // Vincenzo Librandi, Aug 07 2010
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[#^2-#+1]&] (* Harvey P. Dale, Oct 06 2015 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^2 - p + 1), write("b065508.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 20 2009
    

A154939 Primes p such that (p-1)*(p+1)-+p are primes.

Original entry on oeis.org

3, 5, 11, 31, 101, 131, 149, 181, 241, 331, 419, 449, 709, 1051, 1061, 1171, 1409, 1549, 1579, 1699, 1759, 1831, 2069, 3229, 3449, 3761, 3911, 4159, 4951, 5821, 6029, 6481, 6661, 6679, 6899, 7079, 7151, 7229, 7369, 8101, 8219, 8629, 8861, 9091, 9161, 9521
Offset: 1

Views

Author

Keywords

Comments

That is, primes p such that p^2+p-1 and p^2-p-1 are both primes: intersection of A053184 and A091567. - Michel Marcus, Jul 10 2016

Examples

			2*4=8-+3 -> primes, 4*6=24-+5 -> primes,...
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p-1) and IsPrime(p^2-p-1)]; // Vincenzo Librandi, Jul 10 2016
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]], And@@PrimeQ/@{#^2 - # - 1, #^2 + # - 1} &] (* Vincenzo Librandi, Jul 10 2016 *)
    Select[Prime[Range[1500]],AllTrue[(#-1)(#+1)+{#,-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A053185 Primes of the form p^2 + p - 1 when p is prime.

Original entry on oeis.org

5, 11, 29, 131, 181, 379, 991, 1721, 2861, 3539, 6971, 8009, 10301, 10711, 17291, 22349, 26731, 32941, 36671, 37441, 39799, 54521, 58321, 69431, 79241, 109891, 122149, 139501, 161201, 175979, 186191, 187921, 202049, 212981, 214831, 249499
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Previous name: Primes produced in A053184.

Crossrefs

Cf. A053184.

Programs

  • Magma
    [p: p in PrimesUpTo(600) | IsPrime(p) where p is p^2+p-1]; // Vincenzo Librandi, Aug 12 2017
  • Mathematica
    Select[#^2 + # - 1 &/@Prime[Range[200]], PrimeQ] (* Vincenzo Librandi, Aug 12 2017 *)
  • PARI
    isA053185(n)={local(r);r=0;for(i=floor(sqrt(n+1)),ceil(sqrt(n)-1),if(isprime(i) && n==i^2+i-1 && isprime(n),r=1));r} \\ Michael B. Porter, May 10 2010
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(q=p^2+p-1), print1(q, ", "))); \\ Michel Marcus, Aug 12 2017
    

Extensions

New name from Michel Marcus, Aug 12 2017

A226770 Let n+1 have proper divisors 1 < d_1,...,d_k < n+1; consider all proper divisors of n+d_1,...,n+d_k which did not appear earlier. Let them be d_{1,1}, d_{1,2},..., d_{k,1}, d_{k,2},..., d_{k,t}; then consider proper divisors of n+d_{1,1},...,n+d_{k,t} which did not appear earlier, repeat until no new divisor is introduced. a(n) is the total number of different divisors obtained.

Original entry on oeis.org

0, 0, 1, 0, 3, 0, 5, 1, 5, 0, 9, 0, 11, 2, 3, 0, 15, 0, 17, 3, 11, 0, 21, 1, 19, 5, 17, 0, 27, 0, 29, 7, 19, 4, 23, 0, 35, 8, 23, 0, 39, 0, 41, 6, 23, 0, 45, 3, 41, 2, 31, 0, 51, 3, 39, 9, 35, 0, 57, 0, 59, 12, 29, 11, 47, 0, 65, 14, 43, 0, 69, 0, 71, 12, 39
Offset: 1

Views

Author

Vladimir Shevelev, Jun 17 2013

Keywords

Comments

a(n) = 0, iff n = p - 1, where p is prime; we conjecture that a(p) = p - 2 and, more general, for odd prime p and k>=1, a(p^k) = p^k - p^(k-1) - 1.
If n = p^2 - 1, where p^2 + p - 1 is prime (A053184), then a(n) = 1.
What one can say about other values of a(n)?

Examples

			Let n=9; the proper divisors >1 of n + 1 are 2,5; consider n + 2 = 11 and n + 5 = 14. These numbers give only one "new" proper divisor (>1) 7;  the "new" proper divisors >1 of n + 7 = 16 are 4,8 and n + 4 = 13, n + 8 = 17 do not have proper divisors >1. The set of proper divisors of all considered sums is {2,5,7,4,8}. It contains 5 elements. Thus a(9) = 5.
		

Programs

  • Mathematica
    Table[(div=Most[Rest[Divisors[n+1]]]; If[div=={}, 0, Length[FixedPoint[ Union[Flatten[AppendTo[div, Map[Most[Rest[Divisors[n+#]]]&, #]]]]&, div]]]), {n, 50}] (* Peter J. C. Moses, Jun 17 2013 *)

A155006 Primes p such that (p-2)*(p+2)-+2*p are primes.

Original entry on oeis.org

5, 7, 13, 23, 37, 43, 73, 167, 233, 263, 433, 557, 587, 593, 607, 727, 857, 1153, 1597, 1627, 1753, 2143, 2663, 2713, 3433, 3607, 3863, 3947, 4027, 4363, 4423, 4673, 5147, 5477, 5623, 5807, 5903, 6277, 7237, 7333, 7577, 8287, 8647, 8837, 8887, 9043, 10067
Offset: 1

Views

Author

Keywords

Comments

3*7-10=11, 3*7+10=31,...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]],AllTrue[(#-2)(#+2)+{2#,-2#},PrimeQ]&] (* Harvey P. Dale, Jan 01 2025 *)

A057325 First member of a prime quadruple in a p^2+p-1 progression.

Original entry on oeis.org

3, 11, 53, 1693, 2663, 4423, 16831, 17609, 36229, 49801, 94961, 121493, 150869, 176303, 183761, 188011, 210901, 213833, 218579, 272903, 300301, 329671, 439511, 444791, 453023, 469613, 518813, 531911, 546071, 559703, 570719, 614279, 705781
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Comments

I found only one prime 5-tuple so far: (3,11,131,17291,298995971).
Subsequence of A057324. - Pierre CAMI, Sep 13 2013

Examples

			3 -> 3^2+3-1 = 11 -> 11^2+11-1 = 131 -> 131^2+131-1 = 17291 hence the quadruple (3,11,131,17291).
		

Crossrefs

Programs

  • Mathematica
    okQ[n_] := And@@PrimeQ/@NestList[#^2 + # - 1 &, n, 3];
    Select[ Prime[ Range[ 60000]], okQ] (* Harvey P. Dale, Jan 05 2011 *)
  • PARI
    is(n)=for(k=1,4,if(!isprime(n),return(0));n=n^2+n-1);1 \\ Charles R Greathouse IV, Sep 13 2013

Extensions

Offset changed by Andrew Howroyd, Aug 14 2024

A155007 Primes p such that (p-3)*(p+3)-+3*p are primes.

Original entry on oeis.org

7, 17, 37, 113, 157, 227, 283, 293, 313, 347, 443, 587, 787, 883, 1063, 1097, 1237, 1303, 1327, 1427, 1567, 1723, 1933, 1973, 2087, 2347, 2467, 2687, 2777, 3457, 3593, 4447, 4703, 4793, 4967, 5737, 5827, 6317, 6607, 6793, 6857, 8297, 8563, 8803, 9433
Offset: 1

Views

Author

Keywords

Comments

4*10-3*7=19, 4*10+3*7=61, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,7!}];lst

A261810 n and (2*n^2 + 2*n - 1) are primes.

Original entry on oeis.org

2, 3, 5, 11, 23, 59, 71, 113, 131, 137, 149, 179, 227, 257, 263, 269, 293, 317, 347, 353, 401, 419, 443, 449, 467, 557, 653, 659, 677, 683, 743, 773, 809, 839, 857, 881, 911, 929, 947, 977, 1019, 1049, 1277, 1301, 1319, 1433, 1571, 1697, 1847, 1871, 1901, 1913
Offset: 1

Views

Author

Jaroslav Krizek, Sep 01 2015

Keywords

Comments

Primes p such that (number of divisors of p * sum of divisors of p * product of divisors of p - 1) is also a prime.
Primes p such that (A000005(p) * A000203(p) * A007955(p) - 1) is also a prime.
See similar sequences of type primes p such that x is also a prime for some x wherein tau(p) = A000005(p) = number of divisors of p, sigma(p) = A000203(p) = sum of divisors of p and pod(p) = A007955(p) = product of divisors of p:
A001359 (for x = tau(p) + sigma(p) - 1 and x = tau(p) + pod(p)),
A005382 (for x = tau(p) * pod(p) - 1),
A005384 (for x = sigma(p) + pod(p), x = tau(p) * sigma(p) - 1 and x = tau(p) * pod(p) + 1),
A023200 (for x = tau(p) + sigma(p) + 1),
A023204 (for x = tau(p) + sigma(p) + pod(p) and x = tau(p) * sigma(p) + 1),
A053182 (for x = sigma(p) * pod(p) + 1),
A053184 (for x = sigma(p) * pod(p) - 1),
A158526 (for x = tau(p) * sigma(p) * pod(p) + 1).
For n >= 3, a(n) == 5 mod 6. - Robert Israel, Sep 02 2015

Examples

			3 and 2*3^2 + 2*3 - 1 = 23 are primes.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime(n) and IsPrime(2*n*n + 2*n - 1)];
    
  • Maple
    select(t -> isprime(t) and isprime(2*t^2 + 2*t-1), [2,3,seq(6*i-1,i=1..1000)]); # Robert Israel, Sep 02 2015
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[2 #^2 + 2 # - 1] &] (* Vincenzo Librandi, Sep 02 2015 *)
  • PARI
    is(n)=isprime(n)&&isprime(2*n^2 + 2*n - 1) \\ Anders Hellström, Sep 01 2015
Showing 1-10 of 25 results. Next