cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159991 Powers of 60: a(n) = 60^n.

Original entry on oeis.org

1, 60, 3600, 216000, 12960000, 777600000, 46656000000, 2799360000000, 167961600000000, 10077696000000000, 604661760000000000, 36279705600000000000, 2176782336000000000000, 130606940160000000000000, 7836416409600000000000000, 470184984576000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Examples

			G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

Programs

Formula

a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by Robert B Fowler, Jan 25 2023)
From Muniru A Asiru, Nov 21 2018: (Start)
a(n) = 60^n.
a(n) = 60*a(n-1) for n > 0, a(0) = 1.
G.f.: 1/(1-60*x).
E.g.f: exp(60*x). (End)
a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 01 2019

A060707 Base-60 (Babylonian or sexagesimal) expansion of Pi.

Original entry on oeis.org

3, 8, 29, 44, 0, 47, 25, 53, 7, 24, 57, 36, 17, 43, 4, 29, 7, 10, 3, 41, 17, 52, 36, 12, 14, 36, 44, 51, 50, 15, 33, 7, 23, 59, 9, 13, 48, 22, 12, 21, 45, 22, 56, 47, 39, 44, 28, 37, 58, 23, 21, 11, 56, 33, 22, 40, 42, 31, 6, 6, 3, 46, 16, 52, 2, 48, 33, 24, 38, 33, 22, 1, 0, 1
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2001

Keywords

References

  • Mohammad K. Azarian, Al-Risala al-Muhitiyya: A Summary, Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
  • Mohammad K. Azarian, The Introduction of Al-Risala al-Muhitiyya: An English Translation, International Journal of Pure and Applied Mathematics, Vol. 57, No. 6, 2009, pp. 903-914.
  • Mohammad K. Azarian, Al-Kashi's Fundamental Theorem, International Journal of Pure and Applied Mathematics, Vol. 14, No. 4, 2004, pp. 499-509. Mathematical Reviews, MR2005b:01021 (01A30), February 2005, p. 919. Zentralblatt MATH, Zbl 1059.01005.
  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60). - Jason Kimberley, Dec 06 2012

Programs

  • Mathematica
    RealDigits[ Pi, 60, 75][[1]]
  • PARI
    { default(realprecision, 17900); x=Pi; for (n=1, 10000, d=floor(x); x=(x-d)*60; write("b060707.txt", n, " ", d)); } \\ Harry J. Smith, Jul 09 2009

A125628 Version of sexagesimal expansion of 2*Pi given by the Persian mathematician Al-Kashi in the 15th Century.

Original entry on oeis.org

6, 16, 59, 28, 1, 34, 51, 46, 14, 50
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 08 2008

Keywords

Comments

The last digit is rounded up from 49, 55 (cf. A091649). - Georg Fischer, Aug 04 2021

Examples

			2*Pi ~= 6; 16, 59, 28, 1, 34, 51, 46, 14, 50.
		

References

  • Mohammad K. Azarian, Al-Risala al-Muhitiyya: A Summary, Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
  • Mohammad K. Azarian, The Introduction of Al-Risala al-Muhitiyya: An English Translation, International Journal of Pure and Applied Mathematics, Vol. 57, No. 6, 2009 , pp. 903-914.
  • Mohammad K. Azarian, Al-Kashi's Fundamental Theorem, International Journal of Pure and Applied Mathematics, Vol. 14, No. 4, 2004, pp. 499-509. Mathematical Reviews, MR2005b:01021 (01A30), February 2005, p. 919. Zentralblatt MATH, Zbl 1059.01005.
  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Showing 1-3 of 3 results.