A366167 Semiprimes that are the sum of two successive terms of A092192.
25, 146, 201, 221, 249, 302, 365, 529, 662, 681, 849, 949, 1211, 1282, 1318, 1343, 1849, 2517, 3223, 3398, 3466, 3635, 3867, 3949, 4063, 4749, 4819, 4997, 5158, 6049, 6614, 7023, 7041, 7066, 7117, 7921, 8314, 8471, 8709, 8727, 8914, 8981, 9155, 9235, 9299, 9563, 10741, 10895, 10958, 11435, 11962
Offset: 1
Keywords
Examples
a(3) = 201 is a term because 201 = 95 + 106 = A092192(7) + A092192(8).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
SP:= select(t -> numtheory:-bigomega(t) = 2, [$1..10000]): A092192:= select(t -> numtheory:-bigomega(t) = 2, SP[2..-1]+SP[1..-2]): select(t -> numtheory:-bigomega(t) = 2, A092192[2..-1]+A092192[1..-2]);
-
Mathematica
sim = Select[Range[4, 100000], 2 == PrimeOmega[#];&]; se = Select[Drop[sim, 1] + Drop[sim, -1], 2 == PrimeOmega[#] &]; Select[Drop[se, 1] + Drop[se, -1], 2 == PrimeOmega[#] &]
-
PARI
upto(n) = {my(pr = 10, res = List(), semiprimes = List([4,6])); forfactored(i = 9, n, if(bigomega(i[2]) == 2, listpop(semiprimes, 1); listput(semiprimes, i[1]); s = semiprimes[1] + semiprimes[2]; if(bigomega(s) == 2, c = s + pr; if(c > n, return(res)); if(bigomega(c) == 2, listput(res, c)); pr = s))); res} \\ David A. Corneth, Oct 02 2023
Comments