cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A109287 4-almost primes equal to p*q + 1, where p and q are (not necessarily distinct) primes.

Original entry on oeis.org

16, 36, 40, 56, 88, 135, 156, 184, 204, 210, 220, 248, 250, 260, 296, 306, 315, 328, 330, 340, 342, 372, 414, 459, 472, 490, 516, 536, 546, 580, 584, 636, 650, 686, 690, 708, 714, 732, 735, 738, 804, 808, 819, 836, 850, 852, 870, 872, 940, 950, 966, 975, 996
Offset: 1

Views

Author

Keywords

Comments

4-almost primes of the form semiprime + 1.

Examples

			a(1) = 16 because (3*5+1)=(2^4) = 16.
a(2) = 36 because (5*7+1)=((2^2)*(3^2)) = 36.
a(3) = 40 because (3*13+1)=((2^3)*5) = 40.
a(4) = 56 because (5*11+1)=((2^3)*7) = 56.
a(5) = 88 because (3*29+1)=((2^3)*11) = 88.
a(6) = 135 because (2*67+1)=((3^3)*5) = 135.
a(7) = 156 because (5*31+1)=((2^2)*3*13) = 156.
a(8) = 184 because (3*61+1)=((2^3)*23) = 184.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 4-almost primes are in A014613.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in this sequence.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.
Similar to A076153; after A076153(0)=3 next difference is A076153(100)=1792 whereas A109287(100)=1794.

Programs

  • Mathematica
    bo[n_] := Plus @@ Last /@ FactorInteger[n]; Select[Range[1000], bo[ # ] == 4 && bo[ # - 1] == 2 &] (* Ray Chandler, Aug 27 2005 *)
  • PARI
    is(n)=bigomega(n)==4 && bigomega(n-1)==2 \\ Charles R Greathouse IV, Sep 16 2015

Formula

a(n) is in this sequence iff a(n) is in A014613 and (a(n)-1) is in A001358.

Extensions

Extended by Ray Chandler, Aug 27 2005
Edited by Ray Chandler, Mar 20 2007

A109373 Semiprimes of the form semiprime + 1.

Original entry on oeis.org

10, 15, 22, 26, 34, 35, 39, 58, 86, 87, 94, 95, 119, 122, 123, 134, 142, 143, 146, 159, 178, 202, 203, 206, 214, 215, 218, 219, 254, 299, 302, 303, 327, 335, 362, 382, 394, 395, 446, 447, 454, 482, 502, 515, 527, 538, 543, 554, 566, 623, 634, 635, 695, 698
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2005

Keywords

Examples

			a(1) = 10 because (3*3+1)=(2*5) = 10.
a(2) = 15 because (2*7+1)=(3*5) = 15.
a(3) = 22 because (3*7+1)=(2*11) = 22.
a(4) = 26 because (5*5+1)=(2*13) = 26.
a(5) = 34 because (3*11+1)=(2*17) = 34.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in this sequence.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.
Subsequence of A088707; A064911.

Programs

  • Haskell
    a109373 n = a109373_list !! (n-1)
    a109373_list = filter ((== 1) . a064911) a088707_list
    -- Reinhard Zumkeller, Feb 20 2012
    
  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[ 700], fQ[ # - 1] && fQ[ # ] &] (* Robert G. Wilson v *)
    With[{sps=Select[Range[700],PrimeOmega[#]==2&]},Transpose[Select[ Partition[ sps,2,1],#[[2]]-#[[1]]==1&]][[2]]] (* Harvey P. Dale, Sep 05 2012 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(n-1)==2 \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(n) is in this sequence iff a(n) is in A001358 and (a(n)-1) is in A001358.
a(n) = A070552(n) + 1.

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Aug 25 2005
Edited by Ray Chandler, Mar 20 2007

A082539 Primes p such that there is no prime q, q < p with q+1 dividing p+1.

Original entry on oeis.org

2, 3, 13, 37, 61, 73, 109, 157, 193, 229, 241, 277, 313, 337, 373, 397, 409, 421, 457, 541, 577, 613, 661, 673, 709, 733, 757, 829, 877, 997, 1009, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297, 1321, 1381, 1453, 1489, 1597, 1621, 1657
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Comments

Contains A005383, primes p such that (p+1)/2 is prime. - T. D. Noe, Apr 28 2004

Crossrefs

Cf. A092307 (primes p such that there are no primes q, 3 < q < p, such that (q-1) divides (p-1)).

Programs

  • Mathematica
    Select[Prime[Range[260]], AllTrue[Most[Divisors[# + 1]], !PrimeQ[#1 - 1] &] &] (* Amiram Eldar, Jun 06 2022 *)

Formula

A084196(A049084(a(n))) = 0.

Extensions

More terms from Reinhard Zumkeller, May 18 2003

A109067 3-almost primes of the form semiprime + 1.

Original entry on oeis.org

27, 50, 52, 63, 66, 70, 75, 78, 92, 116, 124, 130, 147, 170, 186, 188, 195, 207, 222, 236, 238, 255, 266, 268, 275, 279, 290, 292, 310, 322, 356, 363, 366, 387, 399, 404, 412, 418, 423, 428, 438, 452, 455, 470, 474, 483, 494, 498, 506, 518, 530, 534, 539, 555
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2005

Keywords

Examples

			a(1) = 27 because (2*13+1)=(3^3) = 27.
a(2) = 50 because (7*7+1)=(2*5^2) = 50.
a(3) = 52 because (3*17+1)=(2^2*13) = 52.
a(4) = 63 because (2*31+1)=(3^2*7) = 63.
a(5) = 66 because (5*13+1)=(2*3*11) = 66.
a(6) = 70 because (3*23+1)=(2*5*7) = 70.
a(7) = 75 because (2*37+1)=(3*5^2) = 75.
a(8) = 78 because (7*11+1)=(2*3*13) = 78.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 3-almost primes are in A014612.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in this sequence.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[600], f[ # ] == 3 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
    Select[Select[Range[600],PrimeOmega[#]==2&]+1,PrimeOmega[#]==3&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,lim, forprime(q=2,min(p,lim\p), if(bigomega(t=p*q+1)==3, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff a(n) is in A014612 and a(n)-1 is in A001358.

Extensions

Edited and extended by Ray Chandler, Mar 20 2007

A109383 5-almost primes of the form semiprime + 1.

Original entry on oeis.org

112, 120, 162, 300, 304, 378, 392, 396, 408, 520, 552, 567, 592, 612, 630, 656, 675, 680, 688, 696, 700, 750, 780, 918, 924, 944, 952, 980, 990, 1044, 1100, 1116, 1136, 1140, 1160, 1168, 1170, 1242, 1264, 1272, 1300, 1323, 1352, 1372, 1380, 1386, 1416, 1470
Offset: 1

Views

Author

Jonathan Vos Post, Aug 25 2005

Keywords

Examples

			a(1) = 112 because (3*37)+1 = (2^4) * 7 = 112.
a(2) = 120 because (7*17)+1 = (2^3) * 3 * 5 = 120.
a(3) = 162 because (7*23)+1 = 2 * (3^4) = 162.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 5-almost primes are in A014614.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in this sequence.
Least n-almost prime of the form semiprime + 1 are in A128665.

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[1500], f[ # ] == 5 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
  • PARI
    v=vector(10000);i=0; for(n=1,9e99, if(issemi(n)&bigomega(n+1)==5, v[i++]=n+1;if(i==#v, return))); v \\ Charles R Greathouse IV, Feb 14 2011

Formula

a(n) is in this sequence iff a(n) is in A014614 and (a(n)-1) is in A001358.

Extensions

Extended by Ray Chandler, Mar 20 2007

A152951 Complementary von Staudt prime numbers.

Original entry on oeis.org

71, 131, 191, 251, 311, 419, 431, 491, 599, 683, 743, 911, 947, 971, 1031, 1091, 1103, 1151, 1163, 1427, 1451, 1511, 1559, 1571, 1583, 1607, 1667, 1811, 1871, 1931, 1979, 2003, 2111, 2267, 2351, 2399, 2411, 2423, 2531, 2543, 2591, 2663, 2711, 2843, 2927, 2939
Offset: 0

Views

Author

Peter Luschny, Dec 24 2008

Keywords

Comments

A prime number in the arithmetic progression 12n-1 which is not a von Staudt prime number, i.e., 12p <> denominator(B(p-1)/(p-1)), where B(n) is the Bernoulli number.

Crossrefs

Cf. A092307.

Programs

Extensions

More terms from Dana Jacobsen, Dec 29 2015

A092308 For p=prime(n), a(n) = the number of primes q such that q-1 divides p-1.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 4, 4, 3, 4, 5, 7, 5, 4, 3, 4, 3, 8, 5, 4, 8, 4, 3, 5, 7, 5, 4, 3, 8, 6, 6, 4, 4, 5, 4, 6, 8, 5, 3, 4, 3, 11, 4, 8, 5, 7, 8, 4, 3, 6, 5, 3, 11, 4, 5, 3, 4, 7, 8, 8, 4, 4, 6, 4, 9, 4, 8, 10, 3, 7, 7, 3, 4, 6, 7, 3, 4, 11, 8, 8, 4, 13, 4, 11, 4, 3, 7, 7, 6, 7, 3, 3, 6, 5, 5, 3, 4, 8, 6, 14, 6, 4
Offset: 1

Views

Author

T. D. Noe, Feb 12 2004

Keywords

Comments

For many primes p, there are only 3 primes (2,3,p) such that q-1|p-1. See A092307 for a list of those primes.

Examples

			a(12)=7 because for prime(12)=37 there are seven primes q={2, 3, 5, 7, 13, 19, 37} such that q-1 divides 36.
		

Crossrefs

Cf. A092307 (primes for which a(n)=3).

Programs

  • Mathematica
    Table[p=Prime[n]; Length[Select[Divisors[p-1]+1, PrimeQ]], {n, 150}]

A119660 Prime factor of the distinct numbers appearing as denominators of Bernoulli numbers A090801 that is greater than all previous a(n). a(1) = 2.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787
Offset: 1

Views

Author

Alexander Adamchuk, Jul 28 2006

Keywords

Comments

a(n) is identical to A079148[n] up to a(14)=227. Most a(n) except 2,3,239,443,647,659,827,1223,1259,1499,1787... belong to A005385[n]: Safe primes p: (p-1)/2 is also prime.
Except for 2 and 3, the same as A092307. - T. D. Noe, Sep 25 2006

Examples

			A090801[n] begins {1, 2, 6, 30, 42, 66, 138, 282, 330, 354, 498, 510, 642, 690, ...} = {1, {2,1}, {2,3}, {2,3,5}, {2,3,7}, {2,3,11}, {2,3,23}, {2,3,47}, {2,3,5,11}, {2,3,59}, {2,3,83}, {2,3,5,17}, {2,3,107}, {2,3,5,23}, ...}.
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 23, a(7) = 47, a(8) = 59, a(9) = 83, a(10) = 107.
		

Crossrefs

A152952 Von Staudt primes which are not safe primes (A005385).

Original entry on oeis.org

239, 443, 647, 659, 827, 1223, 1259, 1499, 1787, 1847, 2087, 2243, 2339, 2687, 2699, 3299, 3659, 3767, 4943, 5903, 6263, 6287, 6299, 6563, 6863, 6959, 7043, 7487, 7583, 7883, 7907, 7919, 8087, 8219, 8243, 8387, 8627, 8663
Offset: 1

Views

Author

Peter Luschny, Dec 25 2008

Keywords

Examples

			239 is a von Staudt prime because the denominator(B(239-1)/(239-1))=239*12, where B(n) is the Bernoulli number, but (239-1)/2=119=7*17 is not a prime.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local k,L; L:= []; for k from 11 by 12 to n do map(i->i+1,divisors(k-1)); select(isprime,%) minus {2,3}; if % = {k} then L := [op(L),k] fi; od; select(isprime,map(i->i+i+1,select(isprime,[$1..iquo(n,2)]))): sort(convert(convert(L,set) minus convert(%,set),list)): end:
  • Mathematica
    vonStaudtPrimeQ[p_?PrimeQ] := Denominator[BernoulliB[p-1]/(p-1)] == 12*p; safePrimeQ[p_?PrimeQ] := PrimeQ[(p-1)/2]; Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[vonStaudtPrimeQ[p] && !safePrimeQ[p], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jan 27 2014 *)

A219742 Bernoulli denominators with 8 divisors in increasing order (without repetitions).

Original entry on oeis.org

30, 42, 66, 138, 282, 354, 498, 642, 1002, 1074, 1362, 1434, 1578, 2082, 2154, 2298, 2658, 2802, 2874, 3018, 3378, 3522, 3882, 3954, 4314, 4962, 5034, 5178, 5322, 5898, 6114, 7122, 7338, 7554, 7698, 7842, 7914, 8202, 8634, 8922, 8994, 9138, 9714, 10722
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 29 2012

Keywords

Comments

Let m, n >= 1 and let f(m) denote number of Bernoulli numbers less than or equal to 10^m having denominator divisible by a(n). For any n, f(m) = floor(10^m/(a(n)/6 - 1)). It appears that the fraction of even Bernoulli numbers with denominator 6 is not so close to 1/6.

Crossrefs

Programs

  • Mathematica
    6*Prime@Flatten@Position[Table[p = Prime[n]; Length@Select[Divisors[p - 1] + 1, PrimeQ], {n, 277}], 3]

Formula

a(n) = 6*A092307(n).
A002445 INTERSECT A138636.
Showing 1-10 of 11 results. Next