cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A032031 Triple factorial numbers: (3n)!!! = 3^n*n!.

Original entry on oeis.org

1, 3, 18, 162, 1944, 29160, 524880, 11022480, 264539520, 7142567040, 214277011200, 7071141369600, 254561089305600, 9927882482918400, 416971064282572800, 18763697892715776000, 900657498850357248000, 45933532441368219648000, 2480410751833883860992000
Offset: 0

Views

Author

Keywords

Comments

For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the elementary Abelian group (C_3)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Laguerre transform of double factorials 2^n*n! = A000165(n). - Paul Barry, Aug 08 2008
For positive n, a(n) equals the permanent of the n X n matrix consisting entirely of 3's. - John M. Campbell, May 26 2011
a(n) is the product of the positive integers <= 3*n that are multiples of 3. - Peter Luschny, Jun 23 2011
Partial products of A008585. - Reinhard Zumkeller, Sep 20 2013

Crossrefs

Cf. Subsequence of A007661.

Programs

  • Haskell
    a032031 n = a032031_list !! n
    a032031_list = scanl (*) 1 $ tail a008585_list
    -- Reinhard Zumkeller, Sep 20 2013
  • Magma
    [3^n*Factorial(n): n in [0..60]]; // Vincenzo Librandi, Apr 22 2011
    
  • Maple
    with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T), Prod(T,Z,Epsilon), Prod(T,Z))},labeled]:seq(count(ZL,size=i)/i,i=1..17); # Zerinvary Lajos, Dec 16 2007
    A032031 := n -> mul(k, k = select(k-> k mod 3 = 0, [$1 .. 3*n])): seq(A032031(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[3^n*Gamma[1 + n], {n, 0, 20}] (* Roger L. Bagula, Oct 30 2008 *)
    Join[{1},FoldList[Times,3*Range[20]]] (* Harvey P. Dale, Feb 10 2019 *)
    Table[Times@@Range[3n,1,-3],{n,0,20}] (* Harvey P. Dale, Apr 14 2023 *)
  • PARI
    a(n)=3^n*n!;
    
  • PARI
    a(n)=prod(k=1,n, 3*k );
    
  • SageMath
    def A032031(n) : return mul(j for j in range(3,3*(n+1),3))
    [A032031(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    

Formula

a(n) = 3^n*n!.
a(n) = Product_{k=1..n} 3*k.
E.g.f.: 1/(1-3*x).
a(n) = Sum_{k=0..n} C(n,k)*(n!/k!)*2^k*k!. - Paul Barry, Aug 08 2008
a(0) = 1, a(n) = 3*n*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 6*x*(k+1)/(6*x*(k+1) - 1 + 6*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 9*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/3) (A092041).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/3) (A092615). (End)

A092041 Decimal expansion of cube root of e.

Original entry on oeis.org

1, 3, 9, 5, 6, 1, 2, 4, 2, 5, 0, 8, 6, 0, 8, 9, 5, 2, 8, 6, 2, 8, 1, 2, 5, 3, 1, 9, 6, 0, 2, 5, 8, 6, 8, 3, 7, 5, 9, 7, 9, 0, 6, 5, 1, 5, 1, 9, 9, 4, 0, 6, 9, 8, 2, 6, 1, 7, 5, 1, 6, 7, 0, 6, 0, 3, 1, 7, 3, 9, 0, 1, 5, 6, 4, 5, 9, 5, 1, 8, 4, 6, 9, 6, 9, 7, 8, 8, 8, 1, 7, 2, 9, 5, 8, 3, 0, 2, 2, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 27 2004

Keywords

Comments

e^(1/3) maximizes the value of x^(c/(x^3)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.39561242508608952862812531960258683759790651519940...
		

Crossrefs

Cf. A001113, A019774, A091933, A092615 (reciprocal).

Programs

Formula

Equals (729/1552)*(1 + Sum_{n>=1} (1 + n^5/3 + n/3)/(3^n*n!)). - Alexander R. Povolotsky, Sep 13 2011
Equals (1/2)*(1 + (4 + (7 + (10 + ...)/9)/6)/3) = 1 + (1 + (1 + (1 + ...)/9)/6)/3. - Rok Cestnik, Jan 19 2017
Equals lim_{x->0} (tan(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022

A027617 Number of permutations of n elements containing a 3-cycle.

Original entry on oeis.org

0, 0, 0, 2, 8, 40, 200, 1400, 11200, 103040, 1030400, 11334400, 135766400, 1764963200, 24709484800, 370687116800, 5930993868800, 100826895769600, 1814871926067200, 34482566595276800, 689651331905536000, 14482682605174784000, 318619017313845248000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n)/n! is asymptotic to 1-e^(-1/3) = 1 - A092615. - Michel Marcus, Aug 08 2013

Crossrefs

Column k=3 of A293211.

Programs

  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[1/(1-x)-Exp[-x^3/3]/(1-x), {x,0,nn}],x]  (* Geoffrey Critzer, Jan 23 2013 *)
  • PARI
    a(n) = n! * (1 - sum(k=0, floor(n/3), (-1)^k/(k!*3^k) ) ); \\ Stéphane Rézel, Dec 11 2019

Formula

a(n) = n! * ( 1 - Sum_{k=0..floor(n/3)} (-1)^k / (3^k * k!) ).
E.g.f.: 1/(1-x) - exp(-x^3/3)/(1-x). - Geoffrey Critzer, Jan 23 2013
Recurrence: a(n) = n*a(n-1) - (n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 13 2013
Conjectures from Stéphane Rézel, Dec 11 2019: (Start)
Recurrence: a(n) = n*a(n-1), for n > 3 and n !== 0 (mod 3);
for k > 1, a(3*k) = a(3*k-1)*S(k)/S(k-1) where S(k) = 3*k*S(k-1) - (-1)^k with S(1) = 1.
(End)

Extensions

More terms from Geoffrey Critzer, Jan 23 2013

A367730 Decimal expansion of BesselJ(0,2/sqrt(3)).

Original entry on oeis.org

6, 9, 3, 4, 3, 6, 7, 8, 8, 1, 7, 9, 1, 8, 3, 1, 9, 0, 0, 9, 7, 7, 6, 0, 4, 6, 3, 3, 3, 3, 5, 4, 3, 9, 3, 1, 9, 7, 3, 2, 0, 9, 9, 5, 6, 2, 5, 3, 8, 6, 6, 5, 5, 5, 0, 9, 3, 4, 4, 4, 6, 5, 8, 3, 6, 6, 9, 3, 2, 6, 0, 3, 5, 4, 9, 3, 3, 5, 5, 6, 4, 1, 2, 9, 9, 8, 2, 1, 2, 7, 3, 0, 3, 2, 9, 0, 1, 6, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			0.69343678817918319009776046333354393...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselJ[0, 2/Sqrt[3]], 10, 99][[1]]
  • PARI
    besselj(0,2/sqrt(3)) \\ Michel Marcus, Nov 29 2023

Formula

Equals Sum_{k>=0} 1 / ((-3)^k * k!^2).
Showing 1-4 of 4 results.