cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A050265 Primes of the form 2*n^2 + 11.

Original entry on oeis.org

11, 13, 19, 29, 43, 61, 83, 109, 139, 173, 211, 349, 461, 523, 659, 733, 811, 1069, 1163, 1579, 1693, 1811, 1933, 2749, 3373, 3539, 3709, 4243, 4813, 5011, 5419, 5843, 7211, 7699, 7949, 8461, 9533, 9811, 10093, 11261, 13789, 14461, 15149, 16573
Offset: 1

Views

Author

Keywords

Comments

The polynomial 2*n^2 + 11 first fails to produce a prime for n = 11, giving 253 = 11 * 23. - Alonso del Arte, Sep 04 2016
Let P(n) = 2*n^2 + 11. The polynomial P(2*n - 10) = 8*n^2 - 80*n + 11 produces prime values (not distinct) for n = 0 to 10. The polynomial P(3*n - 19) = 18*n^2 - 228*n + 733 produces distinct prime values for n = 0 to 9. - Peter Bala, Apr 16 2018

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 2*n^2+11]; // Vincenzo Librandi, Dec 08 2011
  • Mathematica
    Select[2Range[0, 100]^2 + 11, PrimeQ] (* Harvey P. Dale, May 20 2011 *)

Formula

a(n) = 11 + 2*(A092968(n))^2. - R. J. Mathar, Jan 03 2009

Extensions

11 added by Vincenzo Librandi, Dec 08 2011

A092969 a(1) = 2; for n>1, a(n) = largest prime of the form n!/k + 1, where k < n, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 7, 13, 61, 241, 2521, 20161, 72577, 604801, 39916801, 59875201, 3113510401, 17435658241, 186810624001, 10461394944001, 118562476032001, 0, 24329020081766401, 304112751022080001, 12772735542927360001
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2004

Keywords

Comments

Conjecture: There are only finitely many zeros in this sequence. In other words the sequence is identical to A092965 barring a finite set of terms which are zero.
I found zeros for n: 18,51,53,84,95,100,104,106,143,178,180,181,188,202,203,(204). - Robert G. Wilson v, Mar 27 2004

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ !PrimeQ[n!/k + 1], k++ ]; If[k < n, n!/k + 1, 0]]; Table[ f[n], {n, 22}] (* Robert G. Wilson v, Mar 27 2004 *)
  • PARI
    a(n)=for (i=1,n,if(isprime(n!/i+1),return((n!/i+1))))

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004

A092970 Smallest prime of the form n!/k + 1. k < = n, or 0 if no such prime exists.

Original entry on oeis.org

2, 2, 3, 7, 31, 181, 1009, 13441, 45361, 453601, 3991681, 39916801, 566092801, 10897286401, 130767436801, 2988969984001, 25406244864001, 0, 8109673360588801, 304112751022080001, 2688996956405760001
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2004

Keywords

Examples

			a(10) = 453601 = 10!/8 + 1, as 10!/10 + 1 and 10!/9 + 1 are both composite.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Reverse[n!/Range[n]+1],PrimeQ],{n,30}]/.(Missing[ "NotFound"] -> 0) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 15 2019 *)
  • PARI
    a(n)=for (i=1,n,if(isprime(n!/(n-i+1)+1),return((n!/(n-i+1)+1))))

Extensions

Corrected and extended by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004

A260352 Numbers n such that both 2*n^2+11 and 2*(n+1)^2+11 are prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 19, 23, 28, 29, 30, 41, 42, 49, 62, 69, 70, 94, 95, 108, 123, 136, 145, 151, 152, 189, 190, 204, 212, 215, 223, 227, 276, 277, 278, 281, 290, 291, 294, 314, 328, 342, 353, 367, 368, 372, 405, 410, 436, 488, 497
Offset: 1

Views

Author

Zak Seidov, Jul 23 2015

Keywords

Comments

Both n and n+1 are terms in A092968.

Crossrefs

Cf. A092968.

Programs

  • Magma
    [n: n in [0..600]| IsPrime( 2*n^2+11) and IsPrime(2*(n+1)^2+11)]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    Select[Range[0, 600], PrimeQ[2 #^2 + 11] &&  PrimeQ[2 (# + 1)^2 + 11] &] (* Vincenzo Librandi, Jul 26 2015 *)
  • PARI
    isok(n) = isprime(2*n^2+11) && isprime(2*(n+1)^2+11); \\ Michel Marcus, Jul 26 2015
    

A255842 a(n) = 2*n^2 + 12.

Original entry on oeis.org

12, 14, 20, 30, 44, 62, 84, 110, 140, 174, 212, 254, 300, 350, 404, 462, 524, 590, 660, 734, 812, 894, 980, 1070, 1164, 1262, 1364, 1470, 1580, 1694, 1812, 1934, 2060, 2190, 2324, 2462, 2604, 2750, 2900, 3054, 3212, 3374, 3540, 3710, 3884, 4062, 4244, 4430
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=6 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. Also, it is noted that a(n)*n = (n + sqrt(2))^3 + (n - sqrt(2))^3.
Equivalently, numbers m such that 2*m - 24 is a square.
For n = 0..10, a(n) - 1 is prime (see A092968).

Crossrefs

Cf. A016825 (first differences), A092968, A114949.
Subsequence of A047238 and A047406.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+12: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 12, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+12)
    
  • Sage
    [2*n^2+12 for n in (0..50)]
    

Formula

G.f.: 2*(6 - 11*x + 7*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A114949(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/24. (End)
E.g.f.: 2*exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 24 2025

Extensions

Edited by Bruno Berselli, Mar 11 2015

A257648 Numbers m such that both p=2*m^2+11 and q=2*p^2+11 are prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 13, 20, 31, 52, 54, 62, 65, 70, 75, 137, 151, 153, 163, 212, 224, 281, 284, 329, 384, 419, 424, 445, 455, 489, 505, 524, 581, 593, 642, 646, 680, 706, 723, 738, 746, 775, 787, 795, 830, 841, 843, 918, 953, 970, 973, 984
Offset: 1

Views

Author

Zak Seidov, Jul 25 2015

Keywords

Comments

Numbers m such that both m and p=2*m^2+11 are terms in A092968. Also, both p and q are terms in A050265.

Examples

			n=1: m=1=A092968(2) and p=13=A092968(12),
n=8: m=13=A092968(12) and p=349=A092968(127),
n=9: m=20=A092968(12) and p=811=A092968(251).
		

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[PrimeQ[p=2*k^2+11]&&PrimeQ[2*(p)^2+11],Sow[k]],{k,10^3}]][[2,1]]
    bprQ[n_]:=Module[{p=2n^2+11},AllTrue[{p,2p^2+11},PrimeQ]]; Select[Range[ 1000],bprQ] (* Harvey P. Dale, Jun 16 2022 *)

A260354 Numbers n such that 2*n^2+11, 2*(n+1)^2+11 and 2*(n+2)^2+11 are prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 18, 28, 29, 41, 69, 94, 151, 189, 276, 277, 290, 367, 497, 578, 579, 580, 617, 618, 619, 620, 744, 810, 887, 903, 939, 1048, 1049, 1108, 1124, 1125, 1172, 1303, 1304, 1305, 1399, 1420, 1449, 1614, 1761, 1790, 1838, 1861, 1865, 1971
Offset: 1

Views

Author

Zak Seidov, Jul 23 2015

Keywords

Comments

n, n+1 and n+2 are terms in A092968, i.e., n and n+1 are terms in A260352.

Crossrefs

Subsequence of A260352 and A092968.

Programs

  • Magma
    [n: n in [0..3000]| IsPrime( 2*n^2+11) and IsPrime(2*(n+1)^2+11) and IsPrime(2*(n+2)^2+11)]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    Select[Range[0, 2000], PrimeQ[2 #^2 + 11] && PrimeQ[2 (# + 1)^2 + 11] && PrimeQ[2 (# + 2)^2 + 11] &] (* Vincenzo Librandi, Jul 26 2015 *)

A174131 Either 2*n^2-+11 is a prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 23, 24, 27, 28, 29, 31, 37, 41, 43, 46, 48, 49, 50, 52, 60, 62, 65, 70, 71, 72, 78, 83, 85, 87, 90, 91, 94, 95, 96, 98, 100, 105, 106, 108, 109, 111, 117, 120, 123, 124, 126, 128, 130, 134, 136, 137, 139, 145, 146, 147, 151
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 09 2010

Keywords

Examples

			a(1)=0 because 2*0^2-11=-11=nonprime and 2*0^2+11=11=prime; a(2)=1 because 2*1^2-11=-9=nonprime and 2*1^2+11=13=prime; a(3)=2 because 2*2^2-11=-3=nonprime and 2*2^2+11=19=prime; a(4)=4 because 2*4^2-11=21=nonprime and 2*4^2+11=43=prime.
		

Crossrefs

Extensions

Corrected (15 removed) and extended beyond 71 by R. J. Mathar, Apr 20 2010

A260826 Let f(k)=2*k^2+11. For n=0,1,...,11, a(n) = smallest m >= 0 such that f(m-1) is composite if m>0, f(m), f(m+1), ...,f(m+n-1) are prime, and f(m+n) is composite.

Original entry on oeis.org

11, 13, 15, 18, 28, 578, 617, 2067795, 843755046, 134239787815, 1434279786435, 0
Offset: 0

Views

Author

Giovanni Resta and Zak Seidov, Aug 01 2015

Keywords

Comments

Sequence is complete, a(9) and a(10) are due to Giovanni Resta.

Examples

			Note that f(0), f(1), ..., f(10) are prime, while f(11) and f(12) are composite. So a(0)=11 and a(11)=0.
		

Crossrefs

Showing 1-9 of 9 results.