cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A093548 a(n) is the smallest number m such that each of the numbers m and m+1 has n distinct prime divisors.

Original entry on oeis.org

2, 14, 230, 7314, 254540, 11243154, 965009045, 65893166030, 5702759516090, 490005293940084, 76622240600506314
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 06 2004

Keywords

Comments

Prime factors may be repeated in m and m+1. The difference between this sequence and A052215 is that in the latter, no prime factor may be repeated. So A052215 imposes more stringent conditions, hence a(n) <= A052215(n). - N. J. A. Sloane, Nov 21 2015
2^63 < a(12) <= 22593106657425552170. - Donovan Johnson, Jan 08 2009
A115186(n) <= a(n) <= A052215(n). - Zak Seidov, Jan 16 2015

Examples

			a(5) = 254540 because 254540=2^2*5*11*13*89; 254541=3*7*17*23*31
and 254540 is the smallest number m which each of the numbers m & m+1 has 5 distinct prime divisors.
In contrast, A052215(5) = 378014 > 254540. - _N. J. A. Sloane_, Nov 21 2015
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 230, p. 65, Ellipses, Paris 2008.

Crossrefs

Cf. A052215 (another version), A093549, A093550, A115186.

Programs

  • Mathematica
    a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m);Do[Print[a[n]], {n, 7}]
    Flatten[Table[SequencePosition[PrimeNu[Range[260000]],{n,n},1],{n,5}],1][[;;,1]] (* To generate more terms, increase the Range and n constants. *) (* Harvey P. Dale, Jun 08 2023 *)
  • Python
    from sympy import primefactors, primorial
    def a(n):
      m = primorial(n)
      while True:
        if len(primefactors(m)) == n:
          if len(primefactors(m+1)) == n: return m
          else: m += 2
        else: m += 1
    for n in range(1, 6):
      print(a(n), end=", ") # Michael S. Branicky, Feb 14 2021

Formula

a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m)

Extensions

a(8), a(9) from Martin Fuller, Jan 17 2006
a(10)-a(11) from Donovan Johnson, Jan 08 2009

A093550 a(n) is the smallest number m such that each of the numbers m-1, m and m+1 is a product of n distinct primes.

Original entry on oeis.org

34, 1310, 203434, 16467034, 1990586014, 41704979954, 102099792179230, 22192526378762466
Offset: 2

Views

Author

Farideh Firoozbakht, Apr 07 2004, corrected Aug 26 2006

Keywords

Comments

Each term of this sequence is of the form 4k+2.

Examples

			a(5)=16467034 because each of the three numbers 16467034-1, 16467034 & 16467034+1 are products of 5 distinct primes (16467033=3*11*17*149*197, 16467034=2*19*23*83*227, 16467035=5*13*37*41*167) and 16467034 is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (For[m=1, !(Length[FactorInteger[4m+1]]==n && SquareFreeQ[4m+1] && Length[FactorInteger[4m+2]]==n && SquareFreeQ[4m+2] && Length[FactorInteger[4m+3]]==n && SquareFreeQ[4m+3]), m++ ]; 4m+2); Table[Print[a[n]]; a[n], {n, 2, 6}] (* updated by Jean-François Alcover, Jul 04 2013 *)
  • PARI
    a(n)={my(m=1);while(!(issquarefree(m-1)&&issquarefree(m)&&issquarefree(m+1)&&omega(m-1)==n&&omega(m)==n&&omega(m+1)==n),m++);return(m);} main(size)={my(n);return(vector(size,n,a(n+1)));} /* Anders Hellström, Jul 14 2015 */

Extensions

a(7) added from Jacques Tramu's web site by Farideh Firoozbakht, Aug 26 2006
a(8) from Donovan Johnson, Oct 27 2008
a(9) from James G. Merickel, Jul 24 2015

A052215 a(n) = smallest number m such that m and m+1 are the product of exactly n distinct primes.

Original entry on oeis.org

2, 14, 230, 7314, 378014, 11243154, 965009045, 65893166030, 5702759516090, 605247139068494, 78971815814237709, 22593106657425552170
Offset: 1

Views

Author

Erich Friedman, Jan 29 2000

Keywords

Comments

Prime factors may not be repeated in m and m+1. The difference between this sequence and A093548 is that in the latter, prime factors may be repeated. So the present sequence imposes more stringent conditions than A093548, hence a(n) >= A093548(n). - N. J. A. Sloane, Nov 21 2015
A115186(n) <= A093548(n) <= a(n). - Zak Seidov, Jan 16 2015
2^63 < a(12) <= 22593106657425552170. [Donovan Johnson, Oct 23 2008]
a(12) confirmed to be the upper limit of the range above. - Bert Dobbelaere, Jun 27 2019

Examples

			14 and 15 are both the product of 2 primes.
230 is the 3rd entry because we have (230=2*5*23, 231=3*7*11).
		

Crossrefs

Cf. A093548 (another version), A093549, A093550, A115186, A318896.
Subsequence of A005117.

Extensions

More terms from Naohiro Nomoto, Jul 08 2001
a(7) from Farideh Firoozbakht, Apr 06 2004
a(8)-a(10) from Martin Fuller, Jan 17 2006
a(11) from Donovan Johnson, Oct 23 2008
a(12) from Bert Dobbelaere, Jun 27 2019

A113752 Smallest number m such that m, m+1 and m+2 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

33, 170, 1274, 15470, 33614, 3145310, 40909374, 668363967, 9864741248, 179199427328, 967461818750, 57938945781248, 597779386906624
Offset: 2

Views

Author

Martin Fuller, Jan 17 2006

Keywords

Comments

n = A001222(a(n)) = A001222(a(n)+1) = A001222(a(n)+2). Subsequence of A045920.
a(14) <= 1247579465781248. - Donovan Johnson, Jun 12 2013
a(15) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			a(6) = 33614 = 2*7*7*7*7*7, a(6)+1 = 3*3*3*3*5*83, a(6)+2 = 2*2*2*2*11*191
		

Crossrefs

Programs

  • Mathematica
    t = {}; n = 2; m = 1; While[Length[t] < 5, m++; If[n == PrimeOmega[m] == PrimeOmega[m + 1] == PrimeOmega[m + 2], AppendTo[t, m]; n++]]; t (* T. D. Noe, Aug 19 2013 *)

Extensions

a(9)-a(11) from Donovan Johnson, Apr 08 2008
a(12) from Donovan Johnson, Aug 08 2011
a(13) from Jud McCranie, Aug 19 2013
a(14) from Toshitaka Suzuki, Aug 31 2025
Showing 1-4 of 4 results.