A072875
Smallest start for a run of n consecutive numbers of which the i-th has exactly i prime factors.
Original entry on oeis.org
2, 3, 61, 193, 15121, 838561, 807905281, 19896463921, 3059220303001, 3931520917431241
Offset: 1
a(3)=61 because 61 (prime), 62 (=2*31), 63 (=3*3*7) have exactly 1, 2, 3 prime factors respectively, and this is the smallest solution;
a(6)=807905281: 807905281 is prime; 807905281+1=2*403952641;
807905281+2=3*15733*17117; 807905281+3=2*2*1871*107951;
807905281+4=5*11*43*211*1619; 807905281+5=2*3*3*3*37*404357;
807905281+6=7*7*7*7*29*41*283; 807905281 is the smallest number m such that m+k is product of k+1 primes for k=0,1,2,3,4,5,6.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 61, p. 22, Ellipses, Paris 2008.
-
(* This program is not suitable to compute a large number of terms. *) nmax = 6; kmax = 10^6; a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+n-1, k <= kmax, k++, If[AllTrue[Range[0, n-1], PrimeOmega[k+#] == #+1&], Return[k] ] ]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 06 2017 *)
a(7) found by Mark W. Lewis
A093548
a(n) is the smallest number m such that each of the numbers m and m+1 has n distinct prime divisors.
Original entry on oeis.org
2, 14, 230, 7314, 254540, 11243154, 965009045, 65893166030, 5702759516090, 490005293940084, 76622240600506314
Offset: 1
a(5) = 254540 because 254540=2^2*5*11*13*89; 254541=3*7*17*23*31
and 254540 is the smallest number m which each of the numbers m & m+1 has 5 distinct prime divisors.
In contrast, A052215(5) = 378014 > 254540. - _N. J. A. Sloane_, Nov 21 2015
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 230, p. 65, Ellipses, Paris 2008.
-
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m);Do[Print[a[n]], {n, 7}]
Flatten[Table[SequencePosition[PrimeNu[Range[260000]],{n,n},1],{n,5}],1][[;;,1]] (* To generate more terms, increase the Range and n constants. *) (* Harvey P. Dale, Jun 08 2023 *)
-
from sympy import primefactors, primorial
def a(n):
m = primorial(n)
while True:
if len(primefactors(m)) == n:
if len(primefactors(m+1)) == n: return m
else: m += 2
else: m += 1
for n in range(1, 6):
print(a(n), end=", ") # Michael S. Branicky, Feb 14 2021
A052215
a(n) = smallest number m such that m and m+1 are the product of exactly n distinct primes.
Original entry on oeis.org
2, 14, 230, 7314, 378014, 11243154, 965009045, 65893166030, 5702759516090, 605247139068494, 78971815814237709, 22593106657425552170
Offset: 1
14 and 15 are both the product of 2 primes.
230 is the 3rd entry because we have (230=2*5*23, 231=3*7*11).
A259349
Numbers n such that n-1, n, and n+1 are all products of 6 distinct primes (i.e. belong to A067885).
Original entry on oeis.org
1990586014, 1994837494, 2129658986, 2341714794, 2428906514, 2963553594, 3297066410, 3353808094, 3373085990, 3623442746, 3659230730, 3809238770, 3967387346, 4058711734, 4144727994, 4196154390, 4502893746, 4555267690, 4653623534
Offset: 1
1990586013 = 3*13*29*67*109*241,
1990586014 = 2*23*37*43*59*461, and
1990586015 = 5*11*17*19*89*1259; and no smaller trio of this kind exists, making the middle value a(1).
For products of 1, 2, 3, 4, 5, and 6 distinct primes see
A000040,
A006881,
A007304,
A046386,
A046387, and
A067885, resp.
-
{
\\Program initialized with known a(1).\\
\\The purpose of vector s and value u\\
\\is to skip bad values modulo 36.\\
k=1990586014;s=[4,4,8,8,8,4];u=1;
while(1,
if(issquarefree(k),
if(issquarefree(k-1),
if(issquarefree(k+1),
if(omega(k)==6,
if(omega(k-1)==6,
if(omega(k+1)==6,
print1(k" ")))))));
k+=s[u];if(u==6,u=1,u++))
}
A242621
Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.
Original entry on oeis.org
2, 33, 1309, 27962, 3323705, 296602730, 41704979953
Offset: 1
The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
See
A242605-
A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See
A246470 for the quadruplet and
A246548 for the 5-tuple versions of this sequence.
A248203
Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.
Original entry on oeis.org
203434, 214490, 225070, 258014, 294594, 313054, 315722, 352886, 389390, 409354, 418846, 421630, 452354, 464386, 478906, 485134, 500906, 508046, 508990, 526030, 528410, 538746, 542270, 542794, 548302, 556870, 559690, 569066, 571234, 579886, 582406, 588730
Offset: 1
203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by _James G. Merickel_, Jul 23 2015]
-
f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* Vincenzo Librandi, Aug 02 2015 *)
-
{
\\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\
\\ program is to run from a different starting value of n, it must not \\
\\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\
\\ to 2 modulo 4), and either u or the vector s needs to be brought into \\
\\ agreement. \\
n=203434;s=[4,4,8,8,8,4];u=1;
while(1,
if(issquarefree(n) &&
issquarefree(n-1) &&
issquarefree(n+1) &&
omega(n)==4 &&
omega(n-1)==4 &&
omega(n+1)==4,
print1(n, ", "));
n+=s[u];if(u==6,u=1,u++))
} \\ James G. Merickel, Jul 23 2015
-
is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1));
first(m)=my(v=vector(m),i,t=2);for(i=1,m,while(!is_ok(t),t++);v[i]=t;t++);v; /* Anders Hellström, Aug 01 2015 */
A248204
Middle values in trios of products of 5 distinct primes.
Original entry on oeis.org
16467034, 18185870, 21134554, 21374354, 21871366, 22247554, 22412534, 22721586, 24845314, 25118094, 25228930, 25435334, 25596934, 26217246, 27140114, 29218630, 29752346, 30323734, 30563246, 31943066, 32663266, 33367894, 36055046, 38269022, 39738062, 40547066
Offset: 1
16467033=3*11*17*149*197,
16467034=2*19*23*83*227, and
16467035=5*13*37*41*167,
with no smaller similar trio. So a(1)=16467034. [Corrected by _James G. Merickel_, Jul 23 2015]
-
{
\\ This program checks all consecutives with elements not divisible \\
\\ by the squares of 2 or 3. More efficiency is required if enormous \\
\\ numbers of terms are sought and for the analog sequences beyond \\
\\ 6 prime factors. The start value is A093550(5). If a start other \\
\\ than this is chosen, one must be sure that (one of) s or u is \\
\\ adjusted if it needs to be. \\
n=16467034;s=[8,4,4,4,8,8];u=1;
while(1,
if(issquarefree(n) && issquarefree(n-1) && issquarefree(n+1) && omega(n)==5 && omega(n-1)==5 && omega(n+1)==5, print1(n" "));
n+=s[u];
if(u==6,u=1,u++)
)
} \\ James G. Merickel, Jul 23 2015
A259350
Numbers n such that n-1, n, and n+1 are all products of 7 distinct primes.
Original entry on oeis.org
41704979954, 124731595066, 365993436094, 366230785766, 367810728790, 368695198806, 589316590786, 598986161410, 607638803134, 673917791834, 710756189898, 753389272714, 762118572046, 772416848554, 806996241806, 832216749090, 874567856590, 905173650094, 933893335166, 958872775134, 970959170390, 985722818366, 997785568130
Offset: 1
41704979953 = 7*13*29*41*47*59*139,
41704979954 = 2*11*23*31*83*103*311, and
41704979955 = 3*5*17*19*109*157*503; and no smaller such trio exists, so that a(1)=41704979954.
-
{
\\Program runs for arbitrary B.\\
B=10^12;N=primepi(B/(627*17*19*23));
p=vector(N,n,prime(n));
in=primepi((B/210)^(1/3));
P=prod(i=1,27,p[i]);Q=prod(i=28,in,p[i]);
v=28;d=[[1,2],[-1,1],[-2,-1]];i3=6;
while(6*p[i3]^5626,
if(k1*p[i3+1]*p[i3+2]*p[i3+3]*p[i3+4]=k1,v--;Q*=p[v];P/=p[v]));
r=(B\k1)^(1/4);j1=i3+1;
while(p[j1]2,
f=1;if(y1==3,if(a1>j1,f=0));
if(f,
b1=gcd(P,b);z1=omega(b1);
if(z1>2,
if(z1==3,if(b1>j1,f=0));
if(f,
a2=a/a1;
if(gcd(a1,a2)==1,
b2=b/b1;
if(gcd(b1,b2)==1,
a21=gcd(a2,Q);a22=a2/a21;
if(gcd(a21,a22)==1,
y=y1+omega(a21);
if(y>4,
if(y<8,
b21=gcd(Q,b2);b22=b2/b21;
if(gcd(b21,b22)==1,
z=z1+omega(b21);
if(z>4,
if(z<8,
if(y+omega(a22)==7,
if(z+omega(b22)==7,
f1=factor(a1);
if(f1[1,1]*f1[2,1]*f1[3,1]
A259801
Numbers such that it and its two neighbors are products of 8 distinct primes.
Original entry on oeis.org
102099792179230, 117092756174954, 136745109677256, 162338633743714, 167791215874866, 178571623400554, 183789996331514, 188284244083286, 211843056257854, 217181576415166, 224685381821406, 230455538364206, 234115003437666, 247662164889294, 265223112108514, 265730468260830, 266665427846390, 267248859559214, 268021718391414, 274354628059534
Offset: 1
102099792179229=3*13*19*53*83*131*181*1321, 102099792179230=2*5*17*43*127*229*283*1697, and 102099792179231=7*11*23*29*31*71*113*7993. No smaller collection meets the criterion, so a(1)=102099792179230.
A113752
Smallest number m such that m, m+1 and m+2 have exactly n prime factors (counted with multiplicity).
Original entry on oeis.org
33, 170, 1274, 15470, 33614, 3145310, 40909374, 668363967, 9864741248, 179199427328, 967461818750, 57938945781248, 597779386906624
Offset: 2
a(6) = 33614 = 2*7*7*7*7*7, a(6)+1 = 3*3*3*3*5*83, a(6)+2 = 2*2*2*2*11*191
-
t = {}; n = 2; m = 1; While[Length[t] < 5, m++; If[n == PrimeOmega[m] == PrimeOmega[m + 1] == PrimeOmega[m + 2], AppendTo[t, m]; n++]]; t (* T. D. Noe, Aug 19 2013 *)
Showing 1-10 of 12 results.
Comments