cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A124592 Ends of the runs of numbers described in A072875.

Original entry on oeis.org

2, 4, 63, 196, 15125, 838566, 807905287, 19896463928, 3059220303009, 3931520917431250
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2007

Keywords

Formula

a(n) = A072875(n)+n-1.

A093551 Erroneous version of A072875.

Original entry on oeis.org

2, 3, 61, 193, 15121, 838561, 807905281, 23066039641
Offset: 1

Views

Author

Keywords

A086560 Start of first run of n successive numbers in which i-th number has exactly i distinct prime divisors for i = 1..n.

Original entry on oeis.org

2, 5, 64, 1867, 491851, 17681491, 35565206671, 43194825904693
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2003

Keywords

Examples

			a(3) = 64, as 64 has 1, 65 has 2 and 66 has 3 prime divisors: 64 = 2^6, 65 = 5*13 and 66 = 2*3*11.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 64, p. 23, Ellipses, Paris 2008.

Crossrefs

Extensions

More terms from Don Reble, Sep 13 2003
a(7) from Donovan Johnson, Mar 06 2008
a(8) from Donovan Johnson, Jul 19 2011

A093552 a(n) is the smallest number m such that m-k is product of k+1 primes for k=0,1,2,...,n.

Original entry on oeis.org

2, 5, 47, 107, 71999, 392279, 305778479, 24405534719, 899133243623
Offset: 0

Views

Author

Farideh Firoozbakht, Apr 14 2004

Keywords

Comments

Each term of this sequence is prime.

Examples

			a(5)=392279 because:
392279 is prime;
392279-1 = 2*196139;
392279-2 = 3*229*571;
392279-3 = 2*2*281*349;
392279-4 = 5*5*13*17*71;
392279-5 = 2*3*3*19*31*37;
392279 is the smallest number m such that m-k is product of k+1 primes for k=0,1,2,3,4 & 5.
		

Crossrefs

Programs

  • Mathematica
    Table[m = 1; While[Table[Plus @@ Last /@ FactorInteger[Prime[m] - k], {k, 0, n}] != Range[1, n + 1], m++]; Prime[m], {n, 0, 5}] (* Robert Price, Jun 09 2019 *)

Extensions

a(6) corrected by Mike Oakes, Jun 20 2012
a(7) from Zak Seidov, Apr 23 2017
a(8) from Giovanni Resta, Apr 27 2017

A369097 Least starting prime of exactly n consecutive primes p_i (i = 1..n) such that bigomega(p_i + 1) = 1 + i.

Original entry on oeis.org

3, 5, 541, 997, 328753, 5385217, 1287133, 9483302497, 107887226353
Offset: 1

Views

Author

Jean-Marc Rebert, Jun 07 2024

Keywords

Examples

			a(1) = 3, because bigomega(3+1) = 2 and no lesser number has this property.
a(2) = 5, because bigomega(5+1) = 2 and bigomega(7+1) = 3, and no lesser number has this property.
a(3) = 541, because bigomega(541+1) = 2, bigomega(547+1) = 3, bigomega(557+1) = 4 and no lesser number has this property.
		

Crossrefs

Programs

  • PARI
    isok(p, n) = if (bigomega(p+1) != 2, return(0)); for (i=1, n-1, p = nextprime(p+1); if (bigomega(p+1) != i+2, return(0))); if (bigomega(nextprime(p+1)+1) == n+2, return(0)); return(1);
    a(n) = my(p=2); while (!isok(p, n), p = nextprime(p+1)); p; \\ Michel Marcus, Jun 07 2024

A093553 a(n) is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,n.

Original entry on oeis.org

2, 3, 13, 12721, 19441, 5516281, 5516281, 7321991041, 363500177041, 2394196081201, 3163427380990801, 22755817971366481, 3788978012188649281, 2918756139031688155201
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 14 2004

Keywords

Comments

This sequence is A074200(n) + 1. See that entry for more information. - N. J. A. Sloane, May 04 2009
It is obvious that this sequence is increasing and each term is prime. If n > 3 then a(n) == 1 (mod 10).
From Jean-Christophe Hervé, Sep 14 2014: (Start)
a(n) == 1 (mod 120) for all n > 3 (see A163573).
a(4) = 12721 is a quite remarkable number: it is a palindromic prime, its 5 (prime) digits sum to 13, still a prime number (and the preceding element in this sequence, among other things), and as the fourth element of this sequence, it is the smallest prime such that (p-1)/2, (p-2)/3 and (p-3)/4 are also prime, and many other properties. (End)

Examples

			a(9)=363500177041 because all the nine numbers 363500177041,
(363500177041+1)/2, (363500177041+2)/3, (363500177041+3)/4,
(363500177041+4)/5, (363500177041+5)/6, (363500177041+6)/7,
(363500177041+7)/8 and (363500177041+8)/9 are primes and
363500177041 is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,9.
		

Crossrefs

Cf. A072875.

A201147 Numbers m such that m, m-1 and m-2 are 1,2,3-almost primes respectively.

Original entry on oeis.org

47, 107, 167, 263, 347, 359, 467, 479, 563, 863, 887, 983, 1019, 1187, 1283, 1907, 2039, 2063, 2099, 2447, 2819, 2879, 3023, 3167, 3203, 3623, 3803, 3947, 4139, 4919, 5387, 5399, 5507, 5879, 6599, 6659, 6983, 7079, 7187, 7523, 7559, 7703, 8423, 8699, 8963
Offset: 1

Views

Author

Antonio Roldán, Nov 27 2011

Keywords

Comments

m-2 is multiple of 3.
m is of the form 12k-1.
This sequence is subset of A005385.
Following a suggestion of Claudio Meller.

Examples

			2099 is prime, 2098=2*1049 is semiprime, 2097=3*3*233 is 3-almost prime.
		

Crossrefs

Programs

  • Mathematica
    primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[10000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 &] (* T. D. Noe, Nov 28 2011 *)
    Select[Range[10000],PrimeOmega[Range[#,#+2]]=={3,2,1}&]+2 (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    list(lim)=my(v=List(),L=(lim-2)\3,t); forprime(p=3,L\3, forprime(q=3,min(p,L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

A093852 a(n) = 10^(n-1) - 1 + n*floor(9*10^(n-1)/(n+1)).

Original entry on oeis.org

4, 69, 774, 8199, 84999, 871425, 8874999, 89999999, 909999999, 9181818179, 92499999999, 930769230759, 9357142857140, 93999999999999, 943749999999999, 9470588235294111, 94999999999999999, 952631578947368403, 9549999999999999999, 95714285714285714279
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2004

Keywords

Comments

This sequence is the main diagonal of A093850.

Examples

			n-th row of the following triangle contains n uniformly located n-digit numbers. i.e. n terms of an arithmetic progression with 10^(n-1)-1 as the term preceding the first term and (n+1)-th term is the largest possible n-digit term.
Given the triangle defined in A093850:
...4;
..39   69;
.324  549  774;
2799 4599 6399 8199.....
then this sequence is the leading diagonal.
		

Crossrefs

Programs

  • Magma
    [10^(n-1) -1 +n*Floor(9*10^(n-1)/(n+1)): n in [1..25]]; // G. C. Greubel, Mar 21 2019
    
  • Maple
    A093852 := proc(n)
            r := n ;
            10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ;
    end proc:
    seq(A093852(n),n=1..50) ; # R. J. Mathar, Oct 01 2011
  • Mathematica
    Table[10^(n-1) -1 +n*Floor[9*10^(n-1)/(n+1)], {n,25}] (* G. C. Greubel, Mar 21 2019 *)
  • PARI
    {a(n) = 10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    [10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1)) for n in (1..25)] # G. C. Greubel, Mar 21 2019

A255092 Least prime p such that p+n is product of (n+1) primes (with multiplicity).

Original entry on oeis.org

2, 3, 43, 13, 239, 59, 171869, 569, 32797, 2551, 649529, 6133, 1708984363, 57331, 103630981, 65521, 301327031, 262127, 82244873046857, 11943917, 38354628391, 26214379, 679922958173, 37748713, 584125518798828101, 553648103, 7625597484961, 2281701349, 882592301503097, 8153726947
Offset: 0

Views

Author

Zak Seidov, Feb 14 2015

Keywords

Comments

For n>0, terms with odd indices 3, 13, 59, 569... are much smaller than neighbor terms with even indices.
For n > 0, a(n) >= A053669(n)^(n+1) - n. - Robert Israel, Sep 25 2024

Examples

			2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2,
32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
        uses priqueue;
          local pq, t, v, p,w,i;
          initialize(pq);
          p:= 2;
          while n mod p = 0 do p:= nextprime(p) od;
          insert([-p^(n+1),[p$(n+1)]],pq);
          do
            t:= extract(pq);
            v:= -t[1]; w:= t[2];
            if isprime(v-n) then return v-n fi;
            p:= nextprime(w[-1]);
          while n mod p = 0 do p:= nextprime(p) od:
           for i from n+1 to 1 by -1 while w[i] = w[n+1] do
            insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq);
         od od
    end proc:
    f(0):= 2:
    map(f, [$0..40]); # Robert Israel, Sep 25 2024

Extensions

More terms from Robert Israel, Sep 25 2024

A136106 a(n) is the smallest prime p such that in the sequence of n numbers p, p+1, p+2, ..., p+n-1, the i-th term has exactly i distinct prime factors, for i = 1, ..., n.

Original entry on oeis.org

2, 5, 103, 1867, 491851, 17681491, 35565206671, 43194825904693
Offset: 1

Views

Author

Enoch Haga, Dec 14 2007

Keywords

Examples

			a(4) = 1867 because it begins with the prime 1867 followed by 1868 with two distinct prime factors, 2 and 467; then 1869 with three distinct prime factors, 3, 7 and 89; then 1870 with four distinct prime factors, 2, 5, 11 and 17.
		

Crossrefs

Programs

  • Mathematica
    Table[First[Select[Prime@Range@100000,(n=1; k=#; While[Length[First/@FactorInteger@k]==n, k++; n++]; n-1==t)&]],{t, 5}]  (* Giorgos Kalogeropoulos, May 07 2019 *)
  • PARI
    /* a brute force program */ a136106(st,ed,ct)={ forprime(x=st,ed, if ((x%6)!=1,next); goodFlag = 1; c = 1; while(goodFlag, if (!(c%2) && isprime(x+c), goodFlag=0, v = factor(x+c); if (length(v[,2]) == c+1, c+=1; if (c > ct,print("Level = ",c," at ",x+c-1,"=",v); ct+=1), goodFlag = 0 ) ) ) ); } \\ Fred Schneider, Dec 18 2007

Formula

a(n) >= A086560(n). - R. J. Mathar, Feb 05 2008
A001221(a(n)+k) = k+1 for 0 <= k <= n-1. - Pontus von Brömssen, Jan 09 2023

Extensions

Edited by N. J. A. Sloane, Dec 23 2007
a(5)-a(6) from Fred Schneider, Dec 18 2007
a(7) from Donovan Johnson, Sep 19 2009
a(8) from Donovan Johnson, Jul 19 2011
Name clarified by Pontus von Brömssen, Jan 09 2023
Showing 1-10 of 16 results. Next