A124592 Ends of the runs of numbers described in A072875.
2, 4, 63, 196, 15125, 838566, 807905287, 19896463928, 3059220303009, 3931520917431250
Offset: 1
Keywords
Formula
a(n) = A072875(n)+n-1.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(3) = 64, as 64 has 1, 65 has 2 and 66 has 3 prime divisors: 64 = 2^6, 65 = 5*13 and 66 = 2*3*11.
a(5)=392279 because: 392279 is prime; 392279-1 = 2*196139; 392279-2 = 3*229*571; 392279-3 = 2*2*281*349; 392279-4 = 5*5*13*17*71; 392279-5 = 2*3*3*19*31*37; 392279 is the smallest number m such that m-k is product of k+1 primes for k=0,1,2,3,4 & 5.
Table[m = 1; While[Table[Plus @@ Last /@ FactorInteger[Prime[m] - k], {k, 0, n}] != Range[1, n + 1], m++]; Prime[m], {n, 0, 5}] (* Robert Price, Jun 09 2019 *)
a(1) = 3, because bigomega(3+1) = 2 and no lesser number has this property. a(2) = 5, because bigomega(5+1) = 2 and bigomega(7+1) = 3, and no lesser number has this property. a(3) = 541, because bigomega(541+1) = 2, bigomega(547+1) = 3, bigomega(557+1) = 4 and no lesser number has this property.
isok(p, n) = if (bigomega(p+1) != 2, return(0)); for (i=1, n-1, p = nextprime(p+1); if (bigomega(p+1) != i+2, return(0))); if (bigomega(nextprime(p+1)+1) == n+2, return(0)); return(1); a(n) = my(p=2); while (!isok(p, n), p = nextprime(p+1)); p; \\ Michel Marcus, Jun 07 2024
a(9)=363500177041 because all the nine numbers 363500177041, (363500177041+1)/2, (363500177041+2)/3, (363500177041+3)/4, (363500177041+4)/5, (363500177041+5)/6, (363500177041+6)/7, (363500177041+7)/8 and (363500177041+8)/9 are primes and 363500177041 is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,9.
2099 is prime, 2098=2*1049 is semiprime, 2097=3*3*233 is 3-almost prime.
primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[10000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 &] (* T. D. Noe, Nov 28 2011 *) Select[Range[10000],PrimeOmega[Range[#,#+2]]=={3,2,1}&]+2 (* Harvey P. Dale, Dec 10 2011 *)
list(lim)=my(v=List(),L=(lim-2)\3,t); forprime(p=3,L\3, forprime(q=3,min(p,L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
n-th row of the following triangle contains n uniformly located n-digit numbers. i.e. n terms of an arithmetic progression with 10^(n-1)-1 as the term preceding the first term and (n+1)-th term is the largest possible n-digit term. Given the triangle defined in A093850: ...4; ..39 69; .324 549 774; 2799 4599 6399 8199..... then this sequence is the leading diagonal.
[10^(n-1) -1 +n*Floor(9*10^(n-1)/(n+1)): n in [1..25]]; // G. C. Greubel, Mar 21 2019
A093852 := proc(n) r := n ; 10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ; end proc: seq(A093852(n),n=1..50) ; # R. J. Mathar, Oct 01 2011
Table[10^(n-1) -1 +n*Floor[9*10^(n-1)/(n+1)], {n,25}] (* G. C. Greubel, Mar 21 2019 *)
{a(n) = 10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019
[10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1)) for n in (1..25)] # G. C. Greubel, Mar 21 2019
2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2, 32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
f:= proc(n) uses priqueue; local pq, t, v, p,w,i; initialize(pq); p:= 2; while n mod p = 0 do p:= nextprime(p) od; insert([-p^(n+1),[p$(n+1)]],pq); do t:= extract(pq); v:= -t[1]; w:= t[2]; if isprime(v-n) then return v-n fi; p:= nextprime(w[-1]); while n mod p = 0 do p:= nextprime(p) od: for i from n+1 to 1 by -1 while w[i] = w[n+1] do insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq); od od end proc: f(0):= 2: map(f, [$0..40]); # Robert Israel, Sep 25 2024
a(4) = 1867 because it begins with the prime 1867 followed by 1868 with two distinct prime factors, 2 and 467; then 1869 with three distinct prime factors, 3, 7 and 89; then 1870 with four distinct prime factors, 2, 5, 11 and 17.
Table[First[Select[Prime@Range@100000,(n=1; k=#; While[Length[First/@FactorInteger@k]==n, k++; n++]; n-1==t)&]],{t, 5}] (* Giorgos Kalogeropoulos, May 07 2019 *)
/* a brute force program */ a136106(st,ed,ct)={ forprime(x=st,ed, if ((x%6)!=1,next); goodFlag = 1; c = 1; while(goodFlag, if (!(c%2) && isprime(x+c), goodFlag=0, v = factor(x+c); if (length(v[,2]) == c+1, c+=1; if (c > ct,print("Level = ",c," at ",x+c-1,"=",v); ct+=1), goodFlag = 0 ) ) ) ); } \\ Fred Schneider, Dec 18 2007
Comments