A180274 Integers whose squares are the sums of 24 consecutive squares.
70, 106, 158, 182, 274, 430, 650, 1022, 1546, 1786, 2702, 4250, 6430, 10114, 15302, 17678, 26746, 42070, 63650, 100118, 151474, 174994, 264758, 416450, 630070, 991066, 1499438, 1732262, 2620834, 4122430, 6237050, 9810542, 14842906, 17147626, 25943582
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- K. S. Brown, Sum of Consecutive Nth Powers Equals an Nth Power
- Fun With Num3ers, Sets of 24 consecutive squares whose sum is a square, July 27 2016.
- V. Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 2 p. 8.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,10,0,0,0,0,0,-1).
Programs
-
Maple
A094196 := proc(n) if n <= 12 then op(n,[1, 9, 20, 25, 44, 76, 121, 197, 304, 353, 540, 856]) ; else 10*procname(n-6)-procname(n-12)+92 ; end if ; end proc: A180274 := proc(n) local a96 ; a96 := A094196(n) ; 24*a96^2+552*a96+4324 ; sqrt(%) ; end proc: seq(A180274(n),n=1..30) ; # R. J. Mathar, Jan 20 2011
-
Mathematica
Select[Sqrt[#]&/@(Total[#]&/@Partition[Range[900000]^2, 24, 1]), IntegerQ] (* Harvey P. Dale, Jan 21 2011 *) t={70, 106, 158, 182, 274, 430, 650, 1022, 1546, 1786, 2702, 4250}; Do[AppendTo[t, 10*t[[-6]] - t[[-12]]], {n, 13, 100}]; t
-
PARI
{ for(n=1,999999,t=((n+23)*(n+24)*(2*n+47)-n*(n-1)*(2*n-1))/6;if(issquare(t),print1(ceil(sqrt(t)),","))) }
-
PARI
Vec(-2*x*(25*x^11+19*x^10+17*x^9+17*x^8+19*x^7+25*x^6-215*x^5-137*x^4-91*x^3-79*x^2-53*x-35) / (x^12-10*x^6+1) + O(x^100)) \\ Colin Barker, May 09 2015
Formula
a(n) = +10*a(n-6) -a(n-12). G.f. ( 70+106*x+158*x^2+182*x^3+274*x^4+430*x^5-50*x^6-38*x^7-34*x^8-34*x^9-38*x^10-50*x^11 ) / ( 1-10*x^6+x^12 ). - Joerg Arndt, Jan 17 2011
Comments