cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A073004 Decimal expansion of exp(gamma).

Original entry on oeis.org

1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*exp(s(n+k)). Then it appears that E(n) converges rapidly to exp(gamma). For example, E(50) = 1.78107241799019798523650410310(43...) gives exp(gamma) correct to 29 decimal digits. Cf. A002389. (End)

Examples

			Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.1 and 2.27.2, pp. 31, 187.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 166, 191, 208.

Crossrefs

Cf. A001620 (Euler-Mascheroni constant, gamma).
Cf. A001113, A002389, A067698, A080130, A091901, A094644 (continued fraction for exp(gamma)), A155969, A246499.

Programs

  • Magma
    R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[ E^(EulerGamma), 10, 110] [[1]]
  • PARI
    exp(Euler)
    

Formula

By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024

A079650 Continued fraction for e^(-gamma).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 3, 5, 4, 1, 1, 2, 2, 1, 7, 9, 1, 16, 1, 1, 1, 2, 6, 1, 2, 1, 6, 2, 59, 1, 1, 1, 3, 3, 3, 2, 1, 3, 5, 100, 1, 58, 1, 2, 1, 94, 1, 1, 2, 2, 10, 1, 2, 7, 1, 3, 4, 5, 3, 10, 1, 21, 1, 11, 1, 4, 1, 2, 2, 1, 2, 2, 1, 8, 3, 2, 1, 1, 6, 1, 2, 2, 1, 38, 2, 1, 4, 1, 3, 1, 1, 5, 3, 1, 52, 1, 2, 2
Offset: 0

Views

Author

Neil Fernandez, Jan 22 2003

Keywords

Comments

Same as A094644 except this number begins with a 0. - T. D. Noe, Jun 18 2012

Examples

			e^(-gamma) = 0.561... = 0 + 1/(1+ 1/ (1 +1/(3+...))), so sequence begins 0, 1, 1, 3,...
		

Crossrefs

Cf. A080130 (exp(-gamma)), A094644.

Programs

  • Mathematica
    ContinuedFraction[Exp[-EulerGamma], 100] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    contfrac(exp(-Euler)) \\ Michel Marcus, Oct 13 2019

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A182551 Decimal expansion of gamma^(1/e), where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

8, 1, 6, 9, 6, 0, 7, 5, 9, 4, 1, 9, 8, 9, 3, 0, 9, 8, 1, 3, 7, 6, 5, 5, 1, 4, 1, 0, 3, 0, 2, 7, 6, 9, 7, 6, 4, 4, 2, 1, 1, 1, 2, 0, 8, 7, 9, 2, 6, 3, 2, 3, 7, 0, 0, 8, 4, 2, 4, 7, 1, 0, 3, 8, 9, 6, 6, 7, 0, 7, 2, 3, 7, 4, 0, 7, 5, 5, 4, 9, 9, 5, 8, 9, 2, 6, 1, 1, 9, 4, 1, 8, 0, 7, 9, 3, 4, 2, 6, 6, 2, 2, 9, 6, 1
Offset: 0

Views

Author

Volker Werner, May 04 2012

Keywords

Examples

			0.81696075941989309813765514103027697644211120879263...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)^(1/Exp(1)); // G. C. Greubel, Sep 06 2018
  • Mathematica
    RealDigits[ N[EulerGamma^(1/E), 105]][[1]]
  • PARI
    default(realprecision, 100); Euler^(1/exp(1)) \\ G. C. Greubel, Sep 06 2018
    

Formula

Equals A001620^(1/A001113).

A064411 Increasing partial quotients of e^gamma.

Original entry on oeis.org

1, 3, 5, 7, 9, 16, 59, 100, 129, 314, 2294, 1568705
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2001

Keywords

References

  • Ronald L. Graham, D. E. Knuth and Oren Patashnik, "Concrete Mathematics, A Foundation for Computer Science," Addison-Wesley Publishing Co., Reading, MA, 1989, page 540.

Crossrefs

Cf. A073004 (e^gamma), A094644 (continued fraction).

Programs

  • Mathematica
    t1 = ContinuedFraction[ E^EulerGamma, 10^5 ]; a = 0; Do[ If[ t1[ [ n ] ] > a, a = t1[ [ n ] ]; Print[ a ] ], {n, 1, 10^5} ]

A179950 Continued fraction for gamma^e, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

0, 4, 2, 4, 1, 14, 2, 1, 4, 1, 19, 3, 1, 4, 10, 13, 1, 5, 67, 3, 1, 3, 1, 1, 1, 1, 3, 11, 1, 1, 5, 4, 3, 3, 1, 16, 1, 1, 1, 2, 3, 5, 1, 1, 41, 1, 1, 4, 17, 3, 24, 1, 7, 307, 8, 1, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 1, 1, 21, 3, 17, 2, 5, 5, 1, 1, 2, 1, 2, 915, 1, 1, 2, 4, 1, 1, 1, 3, 1, 19, 54, 3, 1, 9, 8
Offset: 0

Views

Author

Michel Lagneau, Aug 03 2010

Keywords

Examples

			gamma^e =.224517251983232062665128293743... = 0 + 1/(4 + 1/(2 + 1/(4 + 1/(1 + ...))))
		

Crossrefs

Cf. A001620 (gamma), A073018 (decimal expansion).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(gamma^exp(1)), confrac);

A322604 Factorial expansion of exp(gamma) = Sum_{n>=1} a(n)/n! with a(n) as large as possible.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 2, 4, 7, 5, 6, 5, 12, 1, 12, 9, 0, 7, 4, 14, 10, 17, 2, 14, 23, 4, 2, 2, 16, 2, 10, 18, 23, 26, 26, 26, 24, 1, 17, 26, 18, 12, 0, 15, 42, 34, 39, 33, 20, 18, 40, 43, 12, 47, 51, 10, 50, 35, 14, 23, 16, 1, 55, 41, 34, 29, 14, 41, 35, 60, 53, 45, 61, 35, 49, 73, 13, 13, 57, 59
Offset: 1

Views

Author

Tristan Cam, Dec 20 2018

Keywords

Comments

Gamma is the Euler-Mascheroni constant (A001620).

Examples

			exp(gamma) = 1 + 1/2! + 1/3! + 2/4! + 3/5! + 4/6! + 2/7! + 4/8! + ...
		

Crossrefs

Cf. A073004 (decimal expansion), A094644 (continued fraction), A001620 (Euler-Mascheroni constant).

Programs

  • Maple
    Digits:=200: a:=n->`if`(n=1,floor(exp(gamma)),floor(factorial(n)*exp(gamma))-n*floor(factorial(n-1)*exp(gamma))): seq(a(n),n=1..100); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    With[{b = Exp[EulerGamma]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = exp(Euler); for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))

Formula

Sum_{n>=1} a(n)/n! = exp(gamma) = A073004.

A328339 Simple continued fraction expansion of Gamma(exp(gamma)+1).

Original entry on oeis.org

1, 1, 1, 1, 6, 15, 1, 4, 2, 1, 11, 2, 3, 1, 1, 13, 1, 1, 1, 1, 5, 1, 27, 1, 37, 1, 1, 2, 2, 2, 40, 1, 3, 1, 5, 1, 1, 3, 3942, 3, 2, 1, 13, 3, 11, 1, 2, 1, 15, 1, 1, 2, 1, 51, 37, 1, 1, 13, 4, 1, 1, 2, 5, 1, 1, 2, 1, 1, 5, 1, 75, 1, 16, 6, 2, 2, 1, 1, 7, 2, 4
Offset: 0

Views

Author

Daniel Hoyt, Oct 12 2019

Keywords

Comments

'Gamma' is the gamma function, and 'gamma' is the Euler-Mascheroni constant.
Approximation of Gamma(exp(gamma)+1) in decimal: 1.6501566139104548059...

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Gamma[1 + Exp[EulerGamma]], 81] (* Amiram Eldar, Oct 13 2019 *)
  • PARI
    contfrac(gamma(exp(Euler)+1)) \\ Michel Marcus, Nov 04 2019

Formula

Gamma(exp(gamma)+1) = Gamma(exp(gamma)) * exp(gamma).
Showing 1-7 of 7 results.