A204922
Ordered differences of Fibonacci numbers.
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
Offset: 1
a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From _Emanuele Munarini_, Mar 29 2012: (Start)
Triangle begins:
1;
2, 1;
4, 3, 2;
7, 6, 5, 3;
12, 11, 10, 8, 5;
20, 19, 18, 16, 13, 8;
33, 32, 31, 29, 26, 21, 13;
54, 53, 52, 50, 47, 42, 34, 21;
88, 87, 86, 84, 81, 76, 68, 55, 34;
... (End)
-
/* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
-
(See the program at A204924.)
-
create_list(fib(n+3)-fib(k+2),n,0,20,k,0,n); /* Emanuele Munarini, Mar 29 2012 */
-
{T(n,k) = fibonacci(n+2) - fibonacci(k+1)};
for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 03 2019
-
[[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019
A005013
a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=4. Alternates Fibonacci (A000045) and Lucas (A000032) sequences for even and odd n.
Original entry on oeis.org
0, 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584, 9349, 6765, 24476, 17711, 64079, 46368, 167761, 121393, 439204, 317811, 1149851, 832040, 3010349, 2178309, 7881196, 5702887, 20633239, 14930352, 54018521, 39088169, 141422324
Offset: 0
G.f. = x + x^2 + 4*x^3 + 3*x^4 + 11*x^5 + 8*x^6 + 29*x^7 + 21*x^8 + 76*x^9 + ...
a(3) = 4 since p(x) = (x^2 - 3*x + 4) / 2 interpolates p(1) = 1, p(2) = 1, p(3) = 2, and p(4) = 4. - _Michael Somos_, Jan 08 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..2000 (terms 0..500 from T. D. Noe)
- A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. [Annotated scanned copy]
- Seong Ju Kim, R. Stees and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- E. W. Weisstein, MathWorld: Lehmer Number
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
-
a:=[0,1,1,4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Oct 21 2018
-
a005013 n = a005013_list !! n
a005013_list = alt a000045_list a000032_list where
alt (f::fs) (:l:ls) = f : l : alt fs ls
-- Reinhard Zumkeller, Jan 10 2012
-
I:=[0,1,1,4]; [n le 4 select I[n] else 3*Self(n-2) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 09 2016
-
with(combinat): A005013 := n-> if n mod 2 = 0 then fibonacci(n) else fibonacci(n+1)+fibonacci(n-1); fi;
A005013:=z*(z**2+z+1)/((z**2+z-1)*(z**2-z-1)); # Simon Plouffe in his 1992 dissertation
-
CoefficientList[Series[(x + x^2 + x^3)/(1 - 3x^2 + x^4), {x, 0, 40}], x]
f[n_] = Product[(1 + 4*Sin[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; a = Table[f[n], {n, 0, 30}]; Round[a]; FullSimplify[ExpandAll[a]] (* Roger L. Bagula and Gary W. Adamson, Nov 26 2008 *)
LinearRecurrence[{0, 3, 0, -1}, {0, 1, 1, 4}, 100] (* G. C. Greubel, Feb 08 2016 *)
-
{a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), fibonacci(n))}; /* Michael Somos, Jan 08 2012 */
-
{a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k))), x, n+1))}; /* Michael Somos, Jan 08 2012 */
A128619
Triangle T(n, k) = A127647(n,k) * A128174(n,k), read by rows.
Original entry on oeis.org
1, 0, 1, 2, 0, 2, 0, 3, 0, 3, 5, 0, 5, 0, 5, 0, 8, 0, 8, 0, 8, 13, 0, 13, 0, 13, 0, 13, 0, 21, 0, 21, 0, 21, 0, 21, 34, 0, 34, 0, 34, 0, 34, 0, 34, 0, 55, 0, 55, 0, 55, 0, 55, 0, 55
Offset: 1
First few rows of the triangle are:
1;
0, 1;
2, 0, 2;
0, 3, 0, 3;
5, 0, 5, 0, 5;
0, 8, 0, 8, 0, 8;
13, 0, 13, 0, 13, 0, 13;
0, 21, 0, 21, 0, 21, 0, 21,
...
-
[((n+k+1) mod 2)*Fibonacci(n): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
-
Table[Fibonacci[n]*Mod[n+k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 16 2024 *)
-
flatten([[((n+k+1)%2)*fibonacci(n) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024
A199512
Triangle T(n,k) = Fibonacci(n+k+1), related to A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 3, 5, 8, 13, 5, 8, 13, 21, 34, 8, 13, 21, 34, 55, 89, 13, 21, 34, 55, 89, 144, 233, 21, 34, 55, 89, 144, 233, 377, 610, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181
Offset: 0
Triangle begins :
1
1, 2
2, 3, 5
3, 5, 8, 13
5, 8, 13, 21, 34
8, 13, 21, 34, 55, 89
-
T(n, k) = fibonacci(n+k+1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 01 2017
Showing 1-4 of 4 results.
Comments