A374295 a(n) is the smallest positive integer k such that A096936(k) = n.
1, 7, 4, 91, 2401, 28, 117649, 1729, 196, 31213, 282475249, 364, 13841287201, 1529437, 9604, 53599, 33232930569601, 2548, 1628413597910449, 593047, 470596, 3672178237, 3909821048582988049, 6916, 68574961, 179936733613, 33124, 29059303, 459986536544739960976801, 124852
Offset: 1
Keywords
Examples
n | a(n) ------------+------------------------------------- 2 | 7. 3 = 3*1 | 4. 4 | 91 = 7 * 13. 5 | 2401 = 7^4. 6 = 3*2 | 28 = 4 * 7. 7 | 117649 = 7^6. 8 | 1729 = 7 * 13 * 19. 9 = 3*3 | 196 = 4 * 7^2. 10 | 31213 = 7^4 * 13. 11 | 282475249 = 7^10. 12 = 3*4 | 364 = 4 * 7 * 13. 13 | 13841287201 = 7^12. 14 | 1529437 = 7^6 * 13. 15 = 3*5 | 9604 = 4 * 7^4. 16 | 53599 = 7 * 13 * 19 * 31. 17 | 7^16. 18 = 3*6 | 2548 = 4 * 7^2 * 13. 19 | 7^18. 20 | 593047 = 7^4 * 13 * 19. 21 = 3*7 | 470596 = 4 * 7^6. 22 | 3672178237 = 7^10 * 13. 23 | 7^22. 24 = 3*8 | 6916 = 4 * 7 * 13 * 19. 25 | 68574961 = 7^4 * 13^4. 26 | 179936733613 = 7^12 * 13. 27 = 3*9 | 33124 = 4 * 7^2 * 13^2. 28 | 29059303 = 7^6 * 13 * 19. 29 | 7^28. 30 = 3*10 | 124852 = 4 * 7^4 * 13.
Formula
If p is prime, a(p) = 7^(p-1).
a(n) is divisible by 7 for n > 3.
Comments