cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A104597 Triangle T read by rows: inverse of Motzkin triangle A097609.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008

Examples

			1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
		

Crossrefs

Row sums are A009116 with different signs.
Row sums are A146559(n).

Programs

  • Maple
    # Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
    InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
  • Maxima
    T(n,m):=sum(binomial(m,j)*sum(binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1),k,0,n)*(-1)^(m-j),j,0,m); /* Vladimir Kruchinin, Apr 08 2011 */

Formula

T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011
T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013
T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013
From Tom Copeland, Nov 04 2014: (Start)
O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t).
Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2.
The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End)

A211867 a(n) = A097609(2*n-1,n), n>0; a(0)=1.

Original entry on oeis.org

1, 0, 2, 3, 18, 50, 215, 735, 2898, 10668, 41202, 156090, 601623, 2308878, 8923343, 34487453, 133749330, 519277512, 2020262660, 7869597840, 30699524018, 119894389380, 468768069882, 1834589752182, 7186572436887, 28175111736300, 110547143014050, 434049816801900
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 12 2013

Keywords

Programs

  • Maple
    a := n -> (-1)^n*binomial(2*n-1,n-1)*hypergeom([-n,n/2,(n+1)/2], [n,n+1], 4):
    seq(simplify(a(n)), n=0..27); # Peter Luschny, Nov 02 2016
  • Mathematica
    a[n_] := ((-1)^(3*n)*(2*n)!*HypergeometricPFQ[{(n+1)/2, -n, n/2}, {n, n+1}, 4])/(2*n!^2); a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 13 2013, from A097609 *)
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n/2, (binomial(2*n,k)*binomial(n-k-1,n-2*k))/2)); \\ Altug Alkan, Oct 05 2015

Formula

G.f.: x*G'(x)/G(x), where G(x) is the g.f. of A055113.
G.f.: x * d/dx (log(sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4)).
a(n) = sum(j=0..n, C(2*j+n-1,j)*(-1)^(n+j)*C(2*n,n-j))/2, n>0; a(0)=1.
a(n) = A097609(2*n-1,n), n>0; a(0)=1. (Corrected by M. F. Hasler, Feb 12 2013)
a(n) = Sum_{j=0..n/2} (binomial(2*n,j)*binomial(n-j-1,n-2*j))/2. - Vladimir Kruchinin, Oct 05 2015
a(n) ~ 2^(2*n-1) / sqrt(5*Pi*n). - Vaclav Kotesovec, Apr 27 2024

A212696 Central coefficient of the triangle A097609.

Original entry on oeis.org

1, 0, 3, 4, 25, 66, 287, 960, 3789, 13810, 53240, 200652, 771641, 2952054, 11386065, 43910288, 170007429, 658979586, 2560258550, 9960335060, 38811668868, 151418146704, 591464244882, 2312774560296, 9052560751725, 35464735083726, 139054217427702, 545635715465596
Offset: 0

Views

Author

Vladimir Kruchinin, May 24 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n + 1) Sum[Binomial[n + 2 j, n + j] (-1)^(n - j) Binomial[2 n + 1, n + j + 1], {j, 0, n}])/(2 n + 1), {n, 0, 27}] (* or *)
    CoefficientList[Series[(12 - 4/#)/(8 Sqrt[12 x + 2 # + 2]) + 1/(2 #) &@ Sqrt[1 - 4 x], {x, 0, 27}], x] (* Michael De Vlieger, Oct 08 2016 *)
    a[n_] := (-1)^n Binomial[2n, n] HypergeometricPFQ[{(n+1)/2, 1+n/2, -n}, {1+n, 2+n}, 4]; Table[a[n], {n, 0, 27}] (* Peter Luschny, Dec 26 2017 *)
  • PARI
    x='x+O('x^66);
    gf=(12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x));
    Vec(Ser(gf))
    /* Joerg Arndt, Jun 09 2012 */

Formula

G.f.: (12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x)).
a(n) = ((n+1)*Sum_{j=0..n} C(n+2*j, n+j)*(-1)^(n-j)*C(2*n+1, n+j+1)) / (2*n+1).
a(n) = (n+1)*A055113(n).
Conjecture: 2*n*(n-1)*(2*n+1)*(5*n-8)*a(n) -(n-1)*(115*n^3-344*n^2+299*n-82) *a(n-1) -4*(2*n-3)*(5*n^3+27*n^2-74*n+30)*a(n-2) +36*(n-1)*(5*n-3)*(2*n-3)*(2*n-5) *a(n-3)=0. - R. J. Mathar, Oct 08 2016
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([(n+1)/2, 1+n/2, -n], [1+n, 2+n], 4). - Peter Luschny, Dec 26 2017
From Emanuele Munarini, Jul 14 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k)*binomial(n-k-1,k-1)*(n+1)/(2*n-k+1).
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,k)*binomial(3n-2k,2*n-k)*(n+1)/(2*n-k+1).
a(n) = (n+1)/(2n+1)*Sum_{k=0..n} binomial(2*n+i,2*n)*trinomial(2*n+1,n-k)*(-1)^{n-k}, where trinomial(n,k) are the trinomial coefficients (A027907).
a(n) = Sum_{k=0..n} (-1)^k*binomial(3*n-k,n-k)*trinomial(2*n,k)*(n+k+1)/(2*n+1). (End)

A053121 Catalan triangle (with 0's) read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0

Views

Author

Keywords

Comments

Inverse lower triangular matrix of A049310(n,m) (coefficients of Chebyshev's S polynomials).
Walks with a wall: triangle of number of n-step walks from (0,0) to (n,m) where each step goes from (a,b) to (a+1,b+1) or (a+1,b-1) and the path stays in the nonnegative quadrant.
T(n,m) is the number of left factors of Dyck paths of length n ending at height m. Example: T(4,2)=3 because we have UDUU, UUDU, and UUUD, where U=(1,1) and D=(1,-1). (This is basically a different formulation of the previous - walks with a wall - property.) - Emeric Deutsch, Jun 16 2011
"The Catalan triangle is formed in the same manner as Pascal's triangle, except that no number may appear on the left of the vertical bar." [Conway and Smith]
G.f. for row polynomials p(n,x) := Sum_{m=0..n} (a(n,m)*x^m): c(z^2)/(1-x*z*c(z^2)). Row sums (x=1): A001405 (central binomial).
In the language of the Shapiro et al. reference such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. Ginv(x) of the m=0 column of the inverse of a given Bell-matrix (here A049310) is obtained from its g.f. of the m=0 column (here G(x)=1/(1+x^2)) by Ginv(x)=(f^{(-1)}(x))/x, with f(x) := x*G(x) and f^{(-1)}is the compositional inverse function of f (here one finds, with Ginv(0)=1, c(x^2)). See the Shapiro et al. reference.
Number of involutions of {1,2,...,n} that avoid the patterns 132 and have exactly k fixed points. Example: T(4,2)=3 because we have 2134, 4231 and 3214. Number of involutions of {1,2,...,n} that avoid the patterns 321 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. Number of involutions of {1,2,...,n} that avoid the patterns 213 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1432 and 4231. - Emeric Deutsch, Oct 12 2006
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (c(x^2),xc(x^2)), where c(x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Nov 25 2007
A053121^2 = triangle A145973. Convolved with A001405 = triangle A153585. - Gary W. Adamson, Dec 28 2008
By columns without the zeros, n-th row = A000108 convolved with itself n times; equivalent to A = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...), then n-th row = coefficients of A^(n+1). - Gary W. Adamson, May 13 2009
Triangle read by rows,product of A130595 and A064189 considered as infinite lower triangular arrays; A053121 = A130595*A064189 = B^(-1)*A097609*B where B = A007318. - Philippe Deléham, Dec 07 2009
From Mark Dols, Aug 17 2010: (Start)
As an upper right triangle, rows represent powers of 5-sqrt(24):
5 - sqrt(24)^1 = 0.101020514...
5 - sqrt(24)^2 = 0.010205144...
5 - sqrt(24)^3 = 0.001030928...
(Divided by sqrt(96) these powers give a decimal representation of the columns of A007318, with 1/sqrt(96) being the middle column.) (End)
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k (1,0)-steps. Example: T(5,3)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, Jun 01 2011
Let S(N,x) denote the N-th Chebyshev S-polynomial in x (see A049310, cf. [W. Lang]). Then x^n = sum_{k=0..n} T(n,k)*S(k,x). - L. Edson Jeffery, Sep 06 2012
This triangle a(n,m) appears also in the (unreduced) formula for the powers rho(N)^n for the algebraic number over the rationals rho(N) = 2*cos(Pi/N) = R(N, 2), the smallest diagonal/side ratio R in the regular N-gon:
rho(N)^n = sum(a(n,m)*R(N,m+1),m=0..n), n>=0, identical in N >= 1. R(N,j) = S(j-1, x=rho(N)) (Chebyshev S (A049310)). See a comment on this under A039599 (even powers) and A039598 (odd powers). Proof: see the Sep 06 2012 comment by L. Edson Jeffery, which follows from T(n,k) (called here a(n,k)) being the inverse of the Riordan triangle A049310. - Wolfdieter Lang, Sep 21 2013
The so-called A-sequence for this Riordan triangle of the Bell type (c(x^2), x*c(x^2)) (see comments above) is A(x) = 1 + x^2. This proves the recurrence given in the formula section by Henry Bottomley for a(n, m) = a(n-1, m-1) + a(n-1, m+1) for n>=1 and m>=1, with inputs. The Z-sequence for this Riordan triangle is Z(x) = x which proves the recurrence a(n,0) = a(n-1,1), n>=1, a(0,0) = 1. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. - Wolfdieter Lang, Sep 22 2013
Rows of the triangle describe decompositions of tensor powers of the standard (2-dimensional) representation of the Lie algebra sl(2) into irreducibles. Thus a(n,m) is the multiplicity of the m-th ((m+1)-dimensional) irreducible representation in the n-th tensor power of the standard one. - Mamuka Jibladze, May 26 2015
The Riordan row polynomials p(n, x) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*p(n, x) = (E_x + 1)*Sum_{j=0..n-1} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)*p(n-1-j, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle a(n, m) this entails a recurrence for the sequence of column m, given in the formula section. - Wolfdieter Lang, Aug 11 2017
From Roger Ford, Jan 22 2018: (Start)
For row n, the nonzero values represent the odd components (loops) formed by n+1 nonintersecting arches above and below the x-axis with the following constraints: The top has floor((n+3)/2) starting arches at position 1 and the next consecutive odd positions. All other starting top arches are in even positions. The bottom arches are a rainbow of arches. If the component=1 then the arch configuration is a semimeander solution.
Examples: For row 3 {0, 2, 0, 1} there are 3 arch configurations: 2 arch configurations have a component=1; 1 has a component=3. c=components, U=top arch starting in odd position, u=top arch starting in an even position, d=ending top arch:
.
top UuUdUddd c=3 top UdUuUddd c=1 top UdUdUudd c=1
/\ /\
//\\ / \
// \\ / /\ \ /\
// \\ / / \ \ / \
///\ /\\\ /\ / / /\ \ \ /\ /\ / /\ \
\\\ \/ /// \ \ \ \/ / / / \ \ \ \/ / / /
\\\ /// \ \ \ / / / \ \ \ / / /
\\\/// \ \ \/ / / \ \ \/ / /
\\// \ \ / / \ \ / /
\/ \ \/ / \ \/ /
\ / \ /
\/ \/
For row 4 {2, 0, 3, 0, 1} there are 6 arch configurations: 2 have a component=1; 3 have a component=3: 1 has a component=1. (End)

Examples

			Triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6  7  8  9 10 ...
  0:   1
  1:   0   1
  2:   1   0   1
  3:   0   2   0   1
  4:   2   0   3   0   1
  5:   0   5   0   4   0   1
  6:   5   0   9   0   5   0   1
  7:   0  14   0  14   0   6   0  1
  8:  14   0  28   0  20   0   7  0  1
  9:   0  42   0  48   0  27   0  8  0  1
  10: 42   0  90   0  75   0  35  0  9  0  1
  ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013)
E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3.
From _Paul Barry_, May 29 2009: (Start)
Production matrix is
  0, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Cf. A008315, A049310, A000108, A001405 (row sums), A145973, A153585, A108786, A037952. Another version: A008313. A039598 and A039599 without zeros, and odd and even numbered rows.
Variant without zero-diagonals: A033184 and with rows reversed: A009766.

Programs

  • Haskell
    a053121 n k = a053121_tabl !! n !! k
    a053121_row n = a053121_tabl !! n
    a053121_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1]
    -- Reinhard Zumkeller, Feb 24 2012
    
  • Maple
    T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006
    F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end;
    r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011
    A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1,
    procname(n-1,k-1)+procname(n-1,k+1))) end proc:
    seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
  • Mathematica
    a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *)
    T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n, m)=if(nCharles R Greathouse IV, Mar 09 2016
  • Sage
    def A053121_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1] + M[n-1,k+1]
        return M
    A053121_triangle(13) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
T(2*n+1,2*k+1) = A039598(n,k), T(2*n,2*k) = A039599(n,k). - Philippe Deléham, Apr 16 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Sum_{k=0..n} T(n,k)*A000045(k+1) = A098615(n). - Philippe Deléham, Feb 03 2012
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021

Extensions

Edited by N. J. A. Sloane, Jan 29 2011

A171224 Riordan array (f(x),x*f(x)) where f(x) is the g.f. of A117641.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 11, 6, 3, 0, 1, 42, 23, 9, 4, 0, 1, 167, 90, 36, 12, 5, 0, 1, 684, 365, 144, 50, 15, 6, 0, 1, 2867, 1518, 595, 204, 65, 18, 7, 0, 1, 12240, 6441, 2511, 858, 270, 81, 21, 8, 0, 1, 53043, 27774, 10782, 3672, 1155, 342, 98, 24, 9, 0, 1
Offset: 0

Author

Philippe Deléham, Dec 05 2009

Keywords

Examples

			Triangle begins
    1;
    0,  1;
    1,  0,  1;
    3,  2,  0,  1;
   11,  6,  3,  0,  1;
   42, 23,  9,  4,  0,  1;
  167, 90, 36, 12,  5,  0,  1;
  ...
Production array begins
    0,  1;
    1,  0,  1;
    3,  1,  0,  1;
    9,  3,  1,  0,  1;
   27,  9,  3,  1,  0,  1;
   81, 27,  9,  3,  1,  0,  1;
  243, 81, 27,  9,  3,  1,  0,  1;
  ... - _Philippe Deléham_, Mar 04 2013
		

Crossrefs

Programs

  • Magma
    [[((k+1)/(n+1))*(&+[3^(n-k-2*j)*Binomial(n+1,j)*Binomial(n-k-j-1, n-k-2*j): j in [0..Floor((n-k)/2)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 04 2019
    
  • Mathematica
    T[n_, k_]:= (k+1)/(n+1)*Sum[3^(n-k-2*j)*Binomial[n+1,j]*Binomial[n-k-j-1, n-k-2*j], {j, 0, Floor[(n-k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Apr 04 2019 *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1,n-k-2*j),j,0,floor((n-k)/2)); /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    {T(n,k) = ((k+1)/(n+1))*sum(j=0, floor((n-k)/2), 3^(n-k-2*j) *binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j))}; \\ G. C. Greubel, Apr 04 2019
    
  • Sage
    [[((k+1)/(n+1))*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j) for j in (0..floor((n-k)/2))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 04 2019

Formula

Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n+1), A002212(n+1), A026378(n+1) for x = 0, 1, 2, 3, 4 respectively.
Triangle equals B*A065600*B^(-1) = B^2*A097609*B^(-2) = B^3*A053121*B^(-3), product considered as infinite lower triangular arrays and B = A007318. - Philippe Deléham, Dec 08 2009
T(n,k) = T(n-1,k-1) + Sum_{i>=0} T(n-1,k+1+i)*3^i, T(0,0) = 1. - Philippe Deléham, Feb 23 2012
T(n,k) = ((k+1)/(n+1))*Sum_{j=0..floor((n-k)/2)} 3^(n-k-2*j)*C(n+1,j)*C(n-k-j-1,n-k-2*j). - Vladimir Kruchinin, Apr 04 2019

Extensions

Terms a(55) onward added by G. C. Greubel, Apr 04 2019

A171488 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 35, 46, 27, 8, 1, 96, 147, 107, 44, 10, 1, 267, 462, 396, 204, 65, 12, 1, 750, 1437, 1404, 858, 345, 90, 14, 1, 2123, 4438, 4835, 3388, 1625, 538, 119, 16, 1, 6046, 13637, 16305, 12802, 7072, 2805, 791, 152, 18, 1
Offset: 0

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to A064189*B = B*A054336 = B^(-1)*A035324, B = A007318.

Examples

			Triangle T(n,k) (0<=k<=n) begins:
   1;
   2,   1;
   5,   4,   1;
  13,  14,   6,  1;
  35,  46,  27,  8,  1;
  96, 147, 107, 44, 10, 1;
  ...
		

Crossrefs

Programs

  • Maxima
    T(n,k)=((k+1)*sum(binomial(2*j+k,j)*(-1)^j*3^(n-j-k)*binomial(n+1,j+k+1),j,0,n-k))/(n+1); /* Vladimir Kruchinin Sep 30 2020 */

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -2, -1, 0, 1 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,k) = (k+1)*Sum_{j=0..n-k} C(2*j+k,j)*(-1)^j*3^(n-j-k)*C(n+1,j+k+1)/(n+1). - Vladimir Kruchinin Sep 30 2020

A308087 Number of lattice paths from (0,0) to (n,n) using Euclid's orchard as a step-set.

Original entry on oeis.org

1, 1, 1, 3, 13, 45, 153, 515, 1767, 6167, 21697, 76661, 271973, 968561, 3460677, 12399661, 44534647, 160285049, 577949447, 2087375443, 7550053527, 27344761057, 99155777619, 359943568005, 1307923066305, 4756914915657, 17315390737219, 63077564876055
Offset: 0

Author

Nicholas Ham, May 11 2019

Keywords

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y=0, 1, add(add(`if`(1=
          igcd(h, v), b(sort([x-h, y-v])[]), 0), v=1..y), h=1..x))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 12 2019
  • Mathematica
    b[x_, y_] := b[x, y] = If[y == 0, 1, Sum[Sum[If[1 == GCD[h, v], b @@ Sort[{x - h, y - v}], 0], {v, 1, y}], {h, 1, x}]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)

Formula

a(n) mod 2 = 1. - Alois P. Heinz, May 13 2019
a(n) ~ c * d^n / sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.133597878112414800677299372849715598093... - Vaclav Kotesovec, May 24 2019

Extensions

a(16)-a(27) from Alois P. Heinz, May 12 2019

A171505 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A059738.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 34, 29, 9, 1, 117, 128, 57, 12, 1, 405, 538, 309, 94, 15, 1, 1407, 2192, 1533, 604, 140, 18, 1, 4899, 8740, 7179, 3453, 1040, 195, 21, 1, 17083, 34296, 32278, 18264, 6730, 1644, 259, 24, 1, 59629, 132929, 140790, 91372, 39668, 11877, 2443
Offset: 0

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to B*A096164 = A171488*B, B=A007318.

Examples

			Triangle begins :
1 ;
3, 1 ;
10, 6, 1 ;
34, 29, 9, 1 ;
117, 128, 57, 12, 1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -3, -2, -1, 0 respectively.
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-2)^i. - Philippe Deléham, Feb 23 2012

A239425 Expansion of -16/(sqrt(12*x+2*sqrt(1-4*x)+2)-sqrt(1-4*x)-1)^2+1/x^2-1.

Original entry on oeis.org

1, 2, 7, 16, 53, 156, 522, 1702, 5833, 19990, 70079, 247160, 882587, 3172196, 11492847, 41874864, 153452521, 564975570, 2089346157, 7756501690, 28898156364, 108010059036, 404890987653, 1521877280868, 5734545323859, 21657665796526
Offset: 0

Author

Vladimir Kruchinin, Mar 17 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-16/(Sqrt[12*x+2*Sqrt[1-4*x]+2]-Sqrt[1-4*x] -1)^2+1/x^2-1, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 18 2014 *)
    Flatten[{1,Table[Sum[Binomial[n+2*j-1,j+n-1]*(-1)^(j+n)*Binomial[2*n+2,j+n],{j,0,n+2}]/(n+1),{n,1,20}]}] (* Vaclav Kotesovec, Mar 18 2014 *)
  • Maxima
    a(n):=(sum(binomial(n+2*j-1, j)*(-1)^(j+n)*binomial(2*n+2, j+n), j, 0, n+2))/(n+1)-kron_delta(n,0);
    
  • PARI
    my(x='x+O('x^50)); Vec(-16/(sqrt(12*x+2*sqrt(1-4*x)+2)-sqrt(1-4*x) -1)^2 + 1/x^2 -1) \\ G. C. Greubel, Jun 01 2017

Formula

a(n) = (Sum_{j=0..(n+2)} C(n+2*j-1,j)*(-1)^(j+n)*C(2*n+2,j+n))/(n+1) - delta(n,0).
a(n) ~ (5+3*sqrt(5)) * 2^(2*n+1) / (5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 18 2014
Conjecture: 2*(2*n+1)*(n+2)*(n+1)*a(n) +(n+1)*(n^2-27*n+2)*a(n-1) +2*(-73*n^3+204*n^2-167*n+6)*a(n-2) +12*(n-3)*(2*n-3)*(4*n-7)*a(n-3) +216*(2*n-5)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Apr 02 2014

A344567 A(n, k) = [x^k] 2 / (1 - (2*n - 1)*x + sqrt(1 - 2*x - 3*x^2)). The number of n-colored Motzkin arcs of length k. Array read by ascending antidiagonals, n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 4, 3, 1, 4, 10, 13, 9, 6, 1, 5, 17, 34, 35, 21, 15, 1, 6, 26, 73, 117, 96, 51, 36, 1, 7, 37, 136, 315, 405, 267, 127, 91, 1, 8, 50, 229, 713, 1362, 1407, 750, 323, 232, 1, 9, 65, 358, 1419, 3741, 5895, 4899, 2123, 835, 603
Offset: 0

Author

Peter Luschny, May 24 2021

Keywords

Comments

Given a sequence a(n), we call the sequence b(n) Cameron's inverse of a, or, as dubbed by Sloane, INVERTi(a) (see the link 'Transforms' in the footer of the page), if 1 + Sum_{n>=1} a(n)*x^n = 1/(1 - Sum_{n>=1} b(n)*x^n).
Iterating this transform starting from A344506 we get:
a = A344506.
INVERTi(a) = A059738.
INVERTi(INVERTi(a)) = A005773.
INVERTi(INVERTi(INVERTi(a))) = A001006, Motzkin numbers.
INVERTi(INVERTi(INVERTi(INVERTi(a)))) = A005043.
INVERTi(INVERTi(INVERTi(INVERTi(INVERTi(a))))) = A344507.
The sequences generated in this manner correspond to the evaluation of the Motzkin polynomials (coefficients in A064189) at x = 3, 2, 1, 0, -1, -2. In terms of ordinary generating functions we have a ZZ-indexed sequence of sequences which general form is given by the formula in the name.
A "Motzkin path of length n and height k" is an integer lattice path from (0, 0) to (n, k) remaining weakly above the x-axis and consisting of steps in {U, L, D}. These acronyms stand for the steps Up = (1,1), Level = (1,0), and Down = (1, -1). An "n-colored Motzkin arc of length k" is a Motzkin path of length k and height 0 where each Level step of height 0 has one of n colors. A(n, k) is the number of n-colored Motzkin arcs of length k. The Motzkin numbers are M(k) = A(1, k).

Examples

			Array begins at n = 0, row for n = -1 added for illustration:
n\k  0   1    2     3      4       5        6         7  ... [Sequence Triangle]
--------------------------------------------------------------------------------
[-1] 1, -1,   2,   -2,     5,     -3,      15,        3, ...  [A344507]
[ 0] 1,  0,   1,    1,     3,      6,      15,       36, ...  [A005043, A089942]
[ 1] 1,  1,   2,    4,     9,     21,      51,      127, ...  [A001006, A064189]
[ 2] 1,  2,   5,   13,    35,     96,     267,      750, ...  [A005773, A038622]
[ 3] 1,  3,  10,   34,   117,    405,    1407,     4899, ...  [A059738, A126954]
[ 4] 1,  4,  17,   73,   315,   1362,    5895,    25528, ...  [A344506]
[ 5] 1,  5,  26,  136,   713,   3741,   19635,   103071, ...
[ 6] 1,  6,  37,  229,  1419,   8796,   54531,   338082, ...
[ 7] 1,  7,  50,  358,  2565,  18381,  131727,   944035, ...
[ 8] 1,  8,  65,  529,  4307,  35070,  285567,  2325324, ...
.
Triangle starts:
[0] 1;
[1] 1, 0;
[2] 1, 1,  1;
[3] 1, 2,  2,   1;
[4] 1, 3,  5,   4,   3;
[5] 1, 4, 10,  13,   9,    6;
[6] 1, 5, 17,  34,  35,   21,   15;
[7] 1, 6, 26,  73, 117,   96,   51,  36;
[8] 1, 7, 37, 136, 315,  405,  267, 127,  91;
[9] 1, 8, 50, 229, 713, 1362, 1407, 750, 323, 232.
.
Number of colors = 2, length = 4  ->  35.
.
      /\      _ _
     /  \    /   \   /\/\      3 x 1
.    _         _
    / \_     _/ \              2 x 2
.
    /\_ _   _ _/\   _/\_       3 x 4
.
    _ _ _ _                    1 x 16
.
Number of colors = 4, length = 2  ->  17.
.
    /\                         1 x 1
.
    _ _                        1 x 16
		

Programs

  • Maple
    Arow := proc(n, len) option remember;
    2 / (1 - (2*n - 1)*x + sqrt(1 - 2*x - 3*x^2));
    seq(coeff(series(%, x, len+2), x, k), k = 0..len) end:
    T := (n, k) -> Arow(n-k, k+1)[k+1]:
    for n from 0 to 9 do Arow(n, 7) od; # prints array
    for n from 0 to 9 do seq(T(n, k), k=0..n) od; # prints triangle
    # Alternative via series reversion:
    for n from -1 to 6 do  # print the array starting from n = -1
    rgf := x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1):
    subsop(1 = NULL, gfun:-seriestolist(series(rgf, x, 18), 'revogf')) od;
    # Via recursively defined polynomials:
    p := proc(n, k) option remember;
    if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then x*p(n-1, 0) + p(n-1, 1) else p(n-1, k-1) + p(n-1, k) + p(n-1, k+1) fi end:
    A := (n, k) -> subs(x = n, p(k, 0)):
    for n from 0 to 8 do lprint(seq(A(n, k), k = 0..9)) od;
    # Computing the columns:
    Acol := proc(k, len) seq(subs(x = n, p(k, 0)), n = 0..len) end:
    for k from 0 to 6 do Acol(k, 9) od;
  • Mathematica
    Unprotect[Power]; 0^0 := 1;
    A[n_, k_] := Sum[(n-1)^j Binomial[k, j] Hypergeometric2F1[(j - k)/2, (j - k + 1)/2, j + 2, 4], {j, 0, k}]; Table[A[n, k], {n, 0, 6}, {k, 0, 8}]
  • PARI
    F(n) = {x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1)}
    M(n,m=n) = {Mat(vectorv(n, i, Vec(serreverse(F(i-1) + O(x*x^m)))))}
    { my(A=M(8)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, May 27 2021
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(QQ, default_prec=len)
        f = x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1)
        return f.reverse().shift(-1).list()
    for n in (0..8): print(Arow(n,10))
    

Formula

A(n, k) = Sum_{j=0..n} (k - 1)^j*binomial(n, j)*hypergeom([(j - n)/2, (j - n + 1)/2], [j + 2], 4).
Arow(n) = [x^n] reverse(x*((n-1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n-1)*x + 1)) / x.
Computationally more elementary is the following procedure: Let P_n(x) be polynomials defined recursively by P_n(x) = p(n, 0) where p(n, k) = 0 if k < 0 or n < 0 or k > n, p(n, n) = 1, p(n, 0) = x*p(n-1, 0) + p(n-1, 1), and in all other cases p(n, k) = p(n-1, k-1) + p(n-1, k) + p(n-1, k+1). Then A(n, k) = P_k(n).
The coefficients of these polynomials are in A097609. Thus the columns of the array can be calculated as: Acol(k) = [P_k(n) for n >= 0].
Showing 1-10 of 11 results. Next