cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001946 a(n) = 11*a(n-1) + a(n-2).

Original entry on oeis.org

2, 11, 123, 1364, 15127, 167761, 1860498, 20633239, 228826127, 2537720636, 28143753123, 312119004989, 3461452808002, 38388099893011, 425730551631123, 4721424167835364, 52361396397820127, 580696784543856761, 6440026026380244498, 71420983074726546239
Offset: 0

Views

Author

Keywords

Comments

For odd n there is the Aurifeuillian factorization a(n) = Lucas[5n] = Lucas[n]*A[n]*B[n] = A000032[n]*A124296[n]*A124297[n], where A[n] = A124296[n] = 5*F(n)^2 - 5*F(n) + 1 and B[n] = A124297[n] = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci[n]. The largest prime divisors of a(n) for n>0 are listed in A121171[n] = {11, 41, 31, 2161, 151, 2521, 911, ...}. - Alexander Adamchuk, Oct 25 2006
For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 139.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Lucas(5n) = Fibonacci(5n-1) + Fibonacci(5n+1). - Alexander Adamchuk, Oct 25 2006
a(n) = ((11 + 5*sqrt(5))/2)^n + ((11 - 5*sqrt(5))/2)^n. - Tanya Khovanova, Feb 06 2007
Contribution from Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 11*A097842(n), a(2n) = A065705(n).
a(3n+1) = A041226(5n), a(3n+2) = A041226(5n+3), a(3n+3) = 2* A041226(5n+4).
Limit(a(n+k)/a(k), k=infinity) = (A001946(n) + A049666(n)*sqrt(125))/2.
Limit(A001946(n)/A049666(n), n=infinity) = sqrt(125). (End)
From Peter Bala, Mar 22 2015: (Start)
a(n) = Fibonacci(10*n)/Fibonacci(5*n) for n >= 1.
a(n) = ( Fibonacci(5*n + 2*k) - F(5*n - 2*k) )/Fibonacci(2*k) for nonzero integer k.
a(n) = ( Fibonacci(5*n + 2*k + 1) + F(5*n - 2*k - 1) )/Fibonacci(2*k + 1) for arbitrary integer k.
a(n) = Sum_{k = 0..2*n} binomial(2*n,k)*Lucas(n + k). (End)
a(n) = [x^n] ( (1 + 11*x + sqrt(1 + 22*x + 125*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 26 2015
E.g.f.: 2*cosh(5*sqrt(5)*x/2)*(cosh(11*x/2) + sinh(11*x/2)). - Stefano Spezia, Jan 18 2025

A049670 a(n) = Fibonacci(10*n)/55.

Original entry on oeis.org

0, 1, 123, 15128, 1860621, 228841255, 28145613744, 3461681649257, 425758697244867, 52364858079469384, 6440451785077489365, 792123204706451722511, 97424713727108484379488, 11982447665229637126954513, 1473743638109518258131025611, 181258485039805516112989195640
Offset: 0

Views

Author

Keywords

Comments

Chebyshev polynomials S(n-1,123).
Used for all positive integer solutions of Pell equation x^2 - 5*(5*y)^2 = -4. See A097842 with A097843.
This is the k = 10 member of the k-family of sequences {F(k*n)/F(k)}, n >= 0 for k >= 1, with o.g.f. x/(1 - L(k)*x + (-1)^k*x^2). Proof: Binet-de Moivre formula for F and L. See also A028412. - Wolfdieter Lang, Aug 26 2012

Crossrefs

A column of array A028412.
Cf. A000045.

Programs

Formula

G.f.: x/(1-123*x+x^2), 123=L(10)=A000032(10) (Lucas).
a(n+1) = S(n, 123) = U(n, 123/2) = S(2*n+1, 5*sqrt(5))/(5*sqrt(5)), n>=0, with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 123*a(n-1) - a(n-2), n >= 2; a(0)=0, a(1)=1.
a(n) = (ap^n - am^n)/(ap-am) with ap := (123+55*sqrt(5))/2 and am := (123-55*sqrt(5))/2 = 1/ap.
From Peter Bala, Nov 29 2013: (Start)
a(n) = 1/(11*55)*(F(10*n + 5) - F(10*n - 5)).
Sum_{n >= 1} 1/( 11*a(n) + 1/(11*a(n)) ) = 1/11. Compare with A001906 and A049660. (End)
From Peter Bala, Apr 03 2015: (Start)
For integer k, 1 + k*(22 - k)*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*x^n )*( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*(-x)^n ).
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*(-x)^n ) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*(-x)^n ).
1 + 25*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*(-x)^n ) = ( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*(-x)^n ).
1 + 100*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*(-x)^n ) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*(-x)^n ).
1 + 125*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Lucas(5*n)*x^n )*( 1 + Sum_{n >= 1} Lucas(5*n)*(-x)^n ). (End)

Extensions

More terms from James Sellers, Jan 20 2000
Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

A097843 First differences of Chebyshev polynomials S(n,123) = A049670(n+1) with Diophantine property.

Original entry on oeis.org

1, 122, 15005, 1845493, 226980634, 27916772489, 3433536035513, 422297015595610, 51939099382224517, 6388086926998019981, 785682752921374233146, 96632590522402032656977, 11885022951502528642575025, 1461761190444288621004071098, 179784741401695997854858170029
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(11*b(n))^2 - 5*(5*a(n))^2 = -4 with b(n)=A097842(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 125*y^2 = -4 are (11 = 11*1,1), (1364 = 11*124,122), (167761 = 11*15251,15005), (20633239 = 11*1875749,1845493), ...
		

Programs

  • GAP
    a:=[1,122];; for n in [3..20] do a[n]:=123*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019
  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-123*x+x^2) )); // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    LinearRecurrence[{123,-1}, {1,122}, 20] (* G. C. Greubel, Jan 14 2019 *)
  • PARI
    Vec((1-x)/(1-123*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    ((1-x)/(1-123*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 11*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-123*x+x^2).
a(n) = S(n, 123) - S(n-1, 123) = T(2*n+1, 5*sqrt(5)/2)/(5*sqrt(5)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 123*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=122. - Philippe Deléham, Nov 18 2008
a(n) = (F(10*(n+1)) - F(10*n))/F(10), with F=A000045 (Fibonacci). F(10*n)/F(10) = A049670. - Wolfdieter Lang, Oct 11 2012
a(n) = (1/5)*F(10*n + 5). Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/11^2. Compare with A001519 and A007805. - Peter Bala, Nov 29 2013
From Peter Bala, Mar 23 2015: (Start)
a(n) = A049666(2*n + 1).
a(n) = ( Fibonacci(10*n + 10 - 2*k) - Fibonacci(10*n + 2*k) )/( Fibonacci(10 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(10*n + 10 - 2*k - 1) + Fibonacci(10*n + 2*k + 1) )/( Fibonacci(10 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 122, 0, 15005, 0, 1845493, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -125, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.
Showing 1-4 of 4 results.