A098417 A098414(n) - (A007529(n) + A098415(n))/2.
-1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1
Offset: 1
Keywords
A007529 Prime triples: p; p+2 or p+4; p+6 all prime.
5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, 1091, 1277, 1297, 1301, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1783, 1867, 1871, 1873, 1993, 1997
Offset: 1
Keywords
Comments
Or, prime(m) such that prime(m+2) = prime(m)+6. - Zak Seidov, May 07 2012
References
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 65.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Crossrefs
Programs
-
Magma
[NthPrime(n): n in [1..310] | (NthPrime(n)+6) eq NthPrime(n+2)]; // Bruno Berselli, May 07 2012
-
Maple
N:= 10000: # to get all terms <= N Primes:= select(isprime, [seq(2*i+1, i=1..floor((N+5)/2))]):locs:= select(t -> Primes[t+2]-Primes[t]=6, [$1..nops(Primes)-2]): Primes[locs]; # Robert Israel, Apr 30 2015
-
Mathematica
ptrsQ[n_]:=PrimeQ[n+6]&&(PrimeQ[n+2]||PrimeQ[n+4]) Select[Prime[Range[400]],ptrsQ] (* Harvey P. Dale, Mar 08 2011 *)
-
PARI
p=2;q=3;forprime(r=5,1e4,if(r-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, May 07 2012
Formula
a(n) = A098415(n) - 6. - Zak Seidov, Apr 30 2015
A073648 Middle members of prime triples {p, p+2, p+6}.
7, 13, 19, 43, 103, 109, 193, 229, 313, 349, 463, 643, 823, 859, 883, 1093, 1279, 1303, 1429, 1483, 1489, 1609, 1873, 1999, 2083, 2239, 2269, 2659, 2689, 3253, 3463, 3529, 3673, 3919, 4003, 4129, 4519, 4639, 4789, 4933, 4969, 5233, 5479, 5503, 5653, 6199
Offset: 1
Links
- Zak Seidov, Table of n,a(n) for n=1,2380, a(n)<2*10^6
Programs
-
Mathematica
Transpose[Select[Partition[Prime[Range[850]],3,1],Differences[#]=={2,4}&]][[2]] (* Harvey P. Dale, Feb 20 2011 *)
Formula
a(n) = A022004(n) + 2.
Extensions
More terms from Benoit Cloitre, Aug 13 2002
A098415
Greatest members r of prime triples (p,q,r) with p
11, 13, 17, 19, 23, 43, 47, 73, 103, 107, 109, 113, 197, 199, 229, 233, 283, 313, 317, 353, 463, 467, 619, 647, 827, 829, 859, 863, 883, 887, 1093, 1097, 1283, 1303, 1307, 1429, 1433, 1453, 1487, 1489, 1493, 1613, 1669, 1699, 1789, 1873, 1877, 1879, 1999
Offset: 1
Keywords
Comments
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Mathematica
Transpose[Select[Partition[Prime[Range[350]],3,1],#[[3]]- #[[1]] == 6&]][[3]] (* Harvey P. Dale, Mar 17 2015 *)
-
PARI
is(n)=isprime(n) && isprime(n-6) && (isprime(n-2) || isprime(n-4)) \\ Charles R Greathouse IV, Feb 23 2017
A073649 Define the composite field of a prime q to be f(q) = (t,s) if p, q, r are three consecutive primes and q-p = t and r-q = s. This is a sequence of primes q with field (4,2).
11, 17, 41, 71, 101, 107, 197, 227, 281, 311, 461, 617, 827, 857, 881, 1091, 1301, 1427, 1451, 1487, 1667, 1697, 1787, 1871, 1877, 1997, 2087, 2141, 2381, 2687, 2711, 2801, 3167, 3257, 3461, 3467, 3851, 4157, 4517, 4787, 5231, 5417, 5441, 5651, 5657
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Transpose[Select[Partition[Prime[Range[1200]],3,1],Differences[#] == {4,2}&]] [[2]] (* Harvey P. Dale, Jul 23 2011 *)
Extensions
Corrected and extended by Benoit Cloitre, Aug 13 2002
A098420 Members of prime triples (p,q,r) with p < q < r = p + 6.
5, 7, 11, 13, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 97, 101, 103, 107, 109, 113, 191, 193, 197, 199, 223, 227, 229, 233, 277, 281, 283, 307, 311, 313, 317, 347, 349, 353, 457, 461, 463, 467, 613, 617, 619, 641, 643, 647, 821, 823, 827, 829, 853, 857, 859, 863
Offset: 1
Keywords
Comments
Links
- Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013
- Paul Shubhankar, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), Volume-1, Issue-10, December 2013.
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p2=p+2]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p2];AppendTo[lst, p6]];If[PrimeQ[p4=p+4]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p4];AppendTo[lst, p6]], {n, 6!}];Union[lst] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
A098418
Number of prime triples (p,q,r) with p
0, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
Examples
A000040(13)=41: A007529(7)=41, A098414(6)=41 and A098415(k)<>41 for all k, therefore a(13)=2.
Links
- Eric Weisstein's World of Mathematics, Prime Triplet
A098424
Number of prime triples (p,q,r) <= n with p
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11
Offset: 1
Keywords
Comments
Convention: a prime triple is <= n iff its smallest member is <= n;
a(n) <= A098428(n).
Examples
a(15) = #{(5,7,11),(7,11,13),(11,13,17),(13,17,19)} = 4.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Haskell
a098424 n = length [(p,q,r) | p <- takeWhile (<= n) a000040_list, let r = p + 6, a010051 r == 1, q <- [p+1..r-1], a010051 q == 1] -- Reinhard Zumkeller, Nov 15 2011
-
Mathematica
With[{pts=Select[Partition[Prime[Range[1200]],3,1],Last[#]-First[#] == 6&]}, Table[Count[pts,?(First[#]<=n&)],{n,110}]] (* _Harvey P. Dale, Nov 09 2011 *)
A098423
Primes occurring in exactly three prime triples (p,q,r) with p
11, 13, 17, 103, 107, 1487, 1873, 3463, 5653, 15733, 16063, 16067, 19423, 19427, 21017, 22277, 43783, 43787, 55337, 79693, 88813, 101113, 144167, 165707, 166847, 195737, 201827, 225347, 247607, 257863, 266683, 268817, 276043, 284743
Offset: 1
Keywords
Comments
This sequence consists of all integers of the form (prime(m)*prime(m+4)+36)/prime(m+2), for m>0, where prime(m) = A000040(m). Also note that the integers resulting from that rule equal prime(m+2), therefore a(n) also consists of all integers of the form sqrt[prime(m)*prime(m+4)+36]. - Richard R. Forberg, Jan 11 2016
Examples
A000040(27)=103: A007529(11)=103, A098414(10)=103 and A098415(9)=103, therefore 103 is a term.
Links
- Eric Weisstein's World of Mathematics, Prime Triplet
A166007
Number of ones in the binary representation of the middle member q of the prime triple (p,q,r) with p
3, 3, 3, 2, 3, 3, 4, 4, 4, 5, 5, 5, 3, 4, 5, 5, 4, 6, 5, 6, 6, 7, 5, 4, 7, 7, 6, 7, 6, 7, 4, 4, 9, 5, 6, 6, 6, 7, 7, 8, 6, 5, 5, 5, 9, 8, 6, 7, 8, 9, 4, 5, 6, 8, 7, 6, 6, 9, 4, 7, 7, 8, 7, 7, 6, 7, 7, 7, 7, 7, 9, 8, 3, 6, 6, 7, 7, 7, 7, 6, 7, 8, 6, 6, 5, 8
Offset: 1
Examples
For n = 3, (p, q, r) = (11, 13, 17), q = 13 Decimal 13 = Binary 1101 a(3) = Number of ones in 1101 = 3
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
DigitCount[#,2,1]&/@Transpose[Select[Partition[Prime[Range[1000]],3,1], Last[#]-First[#]==6&]][[2]] (* Harvey P. Dale, Dec 03 2014 *)
Extensions
More terms from Harvey P. Dale, Dec 03 2014
Comments
Links