A098416 (A007529(n) + A098415(n)) / 4.
4, 5, 7, 8, 10, 20, 22, 35, 50, 52, 53, 55, 97, 98, 113, 115, 140, 155, 157, 175, 230, 232, 308, 322, 412, 413, 428, 430, 440, 442, 545, 547, 640, 650, 652, 713, 715, 725, 742, 743, 745, 805, 833, 848, 893, 935, 937, 938, 998, 1000, 1042, 1043, 1070, 1120, 1135
Offset: 1
Keywords
A098417 A098414(n) - (A007529(n) + A098415(n))/2.
-1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1
Offset: 1
Keywords
Comments
Links
- Eric Weisstein's World of Mathematics, Prime Triplet
A007529 Prime triples: p; p+2 or p+4; p+6 all prime.
5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, 1091, 1277, 1297, 1301, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1783, 1867, 1871, 1873, 1993, 1997
Offset: 1
Keywords
Comments
Or, prime(m) such that prime(m+2) = prime(m)+6. - Zak Seidov, May 07 2012
References
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 65.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Crossrefs
Programs
-
Magma
[NthPrime(n): n in [1..310] | (NthPrime(n)+6) eq NthPrime(n+2)]; // Bruno Berselli, May 07 2012
-
Maple
N:= 10000: # to get all terms <= N Primes:= select(isprime, [seq(2*i+1, i=1..floor((N+5)/2))]):locs:= select(t -> Primes[t+2]-Primes[t]=6, [$1..nops(Primes)-2]): Primes[locs]; # Robert Israel, Apr 30 2015
-
Mathematica
ptrsQ[n_]:=PrimeQ[n+6]&&(PrimeQ[n+2]||PrimeQ[n+4]) Select[Prime[Range[400]],ptrsQ] (* Harvey P. Dale, Mar 08 2011 *)
-
PARI
p=2;q=3;forprime(r=5,1e4,if(r-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, May 07 2012
Formula
a(n) = A098415(n) - 6. - Zak Seidov, Apr 30 2015
A098412 Greatest members p of prime triples (p-6, p-4, p).
11, 17, 23, 47, 107, 113, 197, 233, 317, 353, 467, 647, 827, 863, 887, 1097, 1283, 1307, 1433, 1487, 1493, 1613, 1877, 2003, 2087, 2243, 2273, 2663, 2693, 3257, 3467, 3533, 3677, 3923, 4007, 4133, 4523, 4643, 4793, 4937, 4973, 5237, 5483, 5507, 5657, 6203
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Magma
[p: p in PrimesUpTo(6500)|IsPrime(p) and IsPrime(p-6) and IsPrime(p-4)]; // Vincenzo Librandi, Dec 26 2010
-
Maple
K:=10^7: # to get all terms <= K. for n from 1 by 2 to K do; if isprime(n-6) and isprime(n-4) and isprime(n) then print(n) else fi; od; # Muniru A Asiru, Aug 06 2017
-
Mathematica
Select[Table[Prime[n], {n, 1000}], PrimeQ[# - 4] && PrimeQ[# - 6] &] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={2,4}&][[All,3]] (* Harvey P. Dale, Sep 23 2017 *)
A098413 Greatest members p of prime triples (p-6, p-2, p).
13, 19, 43, 73, 103, 109, 199, 229, 283, 313, 463, 619, 829, 859, 883, 1093, 1303, 1429, 1453, 1489, 1669, 1699, 1789, 1873, 1879, 1999, 2089, 2143, 2383, 2689, 2713, 2803, 3169, 3259, 3463, 3469, 3853, 4159, 4519, 4789, 5233, 5419, 5443, 5653, 5659, 5743
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Magma
[p: p in PrimesUpTo(6500)|IsPrime(p) and IsPrime(p-6) and IsPrime(p-2)]; // Vincenzo Librandi, Dec 26 2010
-
Mathematica
Transpose[Select[Partition[Prime[Range[800]],3,1],Differences[#] == {4,2}&]][[3]] (* Harvey P. Dale, Aug 21 2013 *)
A098420 Members of prime triples (p,q,r) with p < q < r = p + 6.
5, 7, 11, 13, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 97, 101, 103, 107, 109, 113, 191, 193, 197, 199, 223, 227, 229, 233, 277, 281, 283, 307, 311, 313, 317, 347, 349, 353, 457, 461, 463, 467, 613, 617, 619, 641, 643, 647, 821, 823, 827, 829, 853, 857, 859, 863
Offset: 1
Keywords
Comments
Links
- Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013
- Paul Shubhankar, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), Volume-1, Issue-10, December 2013.
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p2=p+2]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p2];AppendTo[lst, p6]];If[PrimeQ[p4=p+4]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p4];AppendTo[lst, p6]], {n, 6!}];Union[lst] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
A098418
Number of prime triples (p,q,r) with p
0, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
Examples
A000040(13)=41: A007529(7)=41, A098414(6)=41 and A098415(k)<>41 for all k, therefore a(13)=2.
Links
- Eric Weisstein's World of Mathematics, Prime Triplet
A098424
Number of prime triples (p,q,r) <= n with p
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11
Offset: 1
Keywords
Comments
Convention: a prime triple is <= n iff its smallest member is <= n;
a(n) <= A098428(n).
Examples
a(15) = #{(5,7,11),(7,11,13),(11,13,17),(13,17,19)} = 4.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Haskell
a098424 n = length [(p,q,r) | p <- takeWhile (<= n) a000040_list, let r = p + 6, a010051 r == 1, q <- [p+1..r-1], a010051 q == 1] -- Reinhard Zumkeller, Nov 15 2011
-
Mathematica
With[{pts=Select[Partition[Prime[Range[1200]],3,1],Last[#]-First[#] == 6&]}, Table[Count[pts,?(First[#]<=n&)],{n,110}]] (* _Harvey P. Dale, Nov 09 2011 *)
A098423
Primes occurring in exactly three prime triples (p,q,r) with p
11, 13, 17, 103, 107, 1487, 1873, 3463, 5653, 15733, 16063, 16067, 19423, 19427, 21017, 22277, 43783, 43787, 55337, 79693, 88813, 101113, 144167, 165707, 166847, 195737, 201827, 225347, 247607, 257863, 266683, 268817, 276043, 284743
Offset: 1
Keywords
Comments
This sequence consists of all integers of the form (prime(m)*prime(m+4)+36)/prime(m+2), for m>0, where prime(m) = A000040(m). Also note that the integers resulting from that rule equal prime(m+2), therefore a(n) also consists of all integers of the form sqrt[prime(m)*prime(m+4)+36]. - Richard R. Forberg, Jan 11 2016
Examples
A000040(27)=103: A007529(11)=103, A098414(10)=103 and A098415(9)=103, therefore 103 is a term.
Links
- Eric Weisstein's World of Mathematics, Prime Triplet
A055737 Number of prime triples < 10^n, where a prime triple means 3 successive primes of the form {p, p+2, p+4} or {p, p+4, p+6}.
0, 8, 30, 112, 507, 2837, 17220, 111156, 759256, 5425573, 40174725, 305689269, 2379622234, 18887841658
Offset: 1
Comments
For this sequence all three members of the triple must be below the 10^n bound. - Sean A. Irvine, Apr 04 2022
References
- J. Recreational Math., vol. 23, No. 2, 1991, p. 97.
Programs
-
Mathematica
x=168; a=Table[ Prime[ n ], {n, 1, x} ] c=0; Do[ If[ a[[ n ]]+6==a[ [ n+2 ] ], c++ ], {n, 1, x-2} ]; c # the values of x to use are given by A006880
Extensions
a(7)-a(9) from Jud McCranie, Oct 07 2000
a(10)-a(12) from Martin Raab, Oct 04 2006
a(13)-a(14) from Charles R Greathouse IV, Feb 09 2022
Comments
Links