A133304 Number of distinct prime factors of A101291.
2, 3, 5, 5, 5, 6, 5, 5, 5, 4, 5, 4, 5, 7, 7, 6, 5, 4, 5, 9, 7, 5, 4, 5, 6, 6, 8, 5, 6, 4, 7, 5, 7, 5, 5, 7, 4, 4, 6, 7, 6, 7, 8, 5, 8, 7, 6, 5, 7, 7, 6, 7, 4, 5, 8, 7, 8, 8, 7, 6
Offset: 1
Examples
The number of distinct prime factors of 45 is 2. The number of distinct prime factors of 4905 is 3. The number of distinct prime factors of 494550 is 5.
Links
- Dario Alpern, Factorization using the Elliptic Curve Method.
Crossrefs
Cf. A101291.
Programs
-
Maple
A101291 := proc(n) 99*100^n/200-9*10^n/20 ; end: A133304 := proc(n) nops(numtheory[factorset](A101291(n))) ; end: for n from 1 do printf("%d,\n",A133304(n)) ; od: # R. J. Mathar, Jul 08 2009
-
Mathematica
f[n_] := 10^n(10^n - 1)/2; Table[PrimeNu[f[n] - f[n - 1]], {n, 60}] (* James C. McMahon, Mar 14 2025 *)
Extensions
28 more terms from R. J. Mathar, Jul 08 2009
a(41)-a(60) from James C. McMahon, Mar 14 2025
Comments