cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154286 a(n) = E(k)*C(n+k,k) = Euler(k)*binomial(n+k,k) for k=4.

Original entry on oeis.org

5, 25, 75, 175, 350, 630, 1050, 1650, 2475, 3575, 5005, 6825, 9100, 11900, 15300, 19380, 24225, 29925, 36575, 44275, 53130, 63250, 74750, 87750, 102375, 118755, 137025, 157325, 179800, 204600, 231880, 261800, 294525, 330225, 369075, 411255
Offset: 0

Views

Author

Peter Luschny, Jan 06 2009

Keywords

Comments

a(n) = E(4)*binomial(n+4,4) where E(n) are the Euler number in the enumeration A122045.
a(n) is the special case k=4 in the sequence of diagonals in the triangle A153641.
a(n) is the 5th row in A093375.
a(n) is the 5th column in A103406.
a(n) is the 5th antidiagonal in A103283.
(a(n+1) - a(n))/5 are the pyramidal numbers A000292 (n>1).
(a(n+2) - 2a(n+1) + a(n))/5 are the triangular numbers A000217 (n>2).
(a(n+3) - 3a(n+2) + 3a(n+1) - a(n))/5 are the natural numbers A000027 (n > 3).
Number of orbits of Aut(Z^7) as function of the infinity norm (n+4) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 107520. - Philippe A.J.G. Chevalier, Dec 28 2015

Crossrefs

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*5 div 24: n in [0..40]]; // Vincenzo Librandi, Sep 10 2016
    
  • Maple
    seq(euler(4)*binomial(n+4,4),n=0..32);
  • Mathematica
    CoefficientList[Series[-5/(x - 1)^5, {x, 0, 35}], x] (* Robert G. Wilson v, Jan 29 2015 *)
    Table[(n + 1)*(n + 2)*(n + 3)*(n + 4)*5/24, {n, 0, 25}] (* G. C. Greubel, Sep 09 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{5,25,75,175,350},40] (* Harvey P. Dale, Nov 18 2021 *)
  • PARI
    x='x+O('x^99); Vec(5/(1-x)^5) \\ Altug Alkan, Sep 10 2016

Formula

a(n) = (n+1)*(n+2)*(n+3)*(n+4)*5/24.
a(n) = a(n-1)*(n+4)/n (n>0), a(0)=5.
O.g.f.: 5/(1-x)^5.
E.g.f.: (5/24)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 09 2016
a(n) = 5*A000332(n+4). - Michel Marcus, Sep 10 2016

A103406 Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 18, 16, 5, 1, 10, 30, 40, 25, 6, 1, 12, 45, 80, 75, 36, 7, 1, 14, 63, 140, 175, 126, 49, 8, 1, 16, 84, 224, 350, 336, 196, 64, 9, 1, 18, 108, 336, 630, 756, 588, 288, 81, 10, 1, 20, 135, 480, 1050, 1512, 1470, 960, 405, 100, 11, 1, 22, 165
Offset: 0

Views

Author

Gary W. Adamson, Feb 04 2005

Keywords

Comments

This triangle * [1/1, 1/2, 1/3, ...] = (1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Nov 15 2007
Triangle read by rows: T(n,k) = (k+1)*binomial(n,k), 0 <= k <= n. - Philippe Deléham, Apr 20 2009

Examples

			Characteristic polynomial of 3 X 3 matrix [2 1 1 / 1 2 1 / 1 1 2] = x^3 - 6x^2 + 9x - 4.
The first few characteristic polynomials are:
  1
  x - 2
  x^2 - 4x + 3
  x^3 - 6x^2 + 9x - 4
  x^4 - 8x^3 + 18x^2 - 16x + 5
		

Crossrefs

Row sums = A001792: 1, 3, 8, 20, 48, 112, ...
See A103283 for the mirror image.

Programs

  • Maple
    with(linalg): printf(`%d,`,1): for n from 1 to 15 do mymat:=array(1..n, 1..n): for i from 1 to n do for j from 1 to n do if i=j then mymat[i,j]:=2 else mymat[i,j]:=1 fi: od: od: temp:=charpoly(mymat,x): for j from n to 0 by -1 do printf(`%d,`,abs(coeff(temp, x, j))) od: od: # James Sellers, Apr 22 2005
    p := (n,x) -> (x+1)^(n-1)+(x+1)^(n-2)*(n-1);
    seq(seq(coeff(p(n,x),x,n-j-1),j=0..n-1),n=1..11); # Peter Luschny, Feb 25 2014
  • Mathematica
    t[n_, k_] := (k+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2012, after Philippe Deléham *)

Formula

Binomial transform of A127648. - Gary W. Adamson, Nov 15 2007
Equals A128064 * A007318. - Gary W. Adamson, Jan 03 2008
T(n,k) = (k+1)*A007318(n,k). - Philippe Deléham, Apr 20 2009
T(n,k) = Sum_{i=1..k+1} i*binomial(k+1,i)*binomial(n-k,k+1-i). - Mircea Merca, Apr 11 2012
O.g.f.: (1 - y)/(1 - y - x*y)^2 = 1 + (1 + 2*x)*y + (1 + 4*x + 3*x*2)*y^2 + .... - Peter Bala, Oct 18 2023

Extensions

More terms from James Sellers, Apr 22 2005

A093375 Array T(m,n) read by ascending antidiagonals: T(m,n) = m*binomial(n+m-2, n-1) for m, n >= 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 18, 8, 1, 6, 25, 40, 30, 10, 1, 7, 36, 75, 80, 45, 12, 1, 8, 49, 126, 175, 140, 63, 14, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 11, 100, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 12
Offset: 1

Views

Author

Ralf Stephan, Apr 28 2004

Keywords

Comments

Number of n-long m-ary words avoiding the pattern 1-1'2'.
T(n,n+1) = Sum_{i=1..n} T(n,i).
Exponential Riordan array [(1+x)e^x, x] as a number triangle. - Paul Barry, Feb 17 2009
From Peter Bala, Jul 22 2014: (Start)
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A059298. (End)

Examples

			Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows:
   1   1   1   1   1   1 ...
   2   4   6   8  10  12 ...
   3   9  18  30  45  63 ...
   4  16  40  80 140 224 ...
   5  25  75 175 350 630 ...
   ...
Triangle S(n,k) = T(n-k+1, k+1) begins
.n\k.|....0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....2....1
..2..|....3....4....1
..3..|....4....9....6....1
..4..|....5...16...18....8....1
..5..|....6...25...40...30...10....1
..6..|....7...36...75...80...45...12....1
...
		

Crossrefs

Rows include A045943. Columns include A002411, A027810.
Main diagonal is A037965. Subdiagonals include A002457.
Antidiagonal sums are A001792.
See A103283 for a signed version.
Cf. A103406, A059298, A073107 (unsigned inverse).

Programs

  • GAP
    nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));;
    b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
    
  • Mathematica
    nmax = 10;
    T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]];
    row[n_] := T[[n+1, 1 ;; n+1]];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019

Formula

Triangle = P*M, the binomial transform of the infinite bidiagonal matrix M with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal, and zeros elsewhere. P = Pascal's triangle as an infinite lower triangular matrix. - Gary W. Adamson, Nov 05 2006
From Peter Bala, Sep 20 2012: (Start)
E.g.f. for triangle: (1 + z)*exp((1 + x)*z) = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2/2! + ....
O.g.f. for triangle: (1 - x*z)/(1 - z - x*z)^2 = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2 + ....
The n-th row polynomial R(n,x) of the triangle equals (1+x)^n + n*(1+x)^(n-1) for n >= 0 and satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x+y) = Sum_{k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of the triangle is a signed version of A073107. (End)
From Tom Copeland, Oct 20 2015: (Start)
With offset 0 and D = d/dx, the raising operator for the signed row polynomials P(n,x) is RP = x - d{log[e^D/(1-D)]}/dD = x - 1 - 1/(1-D) = x - 2 - D - D^2 + ..., i.e., RP P(n,x) = P(n+1,x).
The e.g.f. for the signed array is (1-t) * e^(-t) * e^(x*t).
From the Appell formalism, the row polynomials PI(n,x) of A073107 are the umbral inverse of this entry's row polynomials; that is, P(n,PI(.,x)) = x^n = PI(n,P(.,x)) under umbral composition. (End)
From Petros Hadjicostas, Nov 01 2019: (Start)
As a triangle, we let S(n,k) = T(n-k+1, k+1) = (n-k+1)*binomial(n, k) for n >= 0 and 0 <= k <= n. See the example below.
As stated above by Peter Bala, Sum_{n,k >= 0} S(n,k)*z^n*x^k = (1 - x*z)/(1 - z -x*z)^2.
Also, Sum_{n, k >= 0} S(n,k)*z^n*x^k/n! = (1+z)*exp((1+x)*z).
As he also states, the n-th row polynomial is R(n,x) = Sum_{k = 0..n} S(n, k)*x^k = (1 + x)^n + n*(1 + x)^(n-1).
If we define the signed triangle S*(n,k) = (-1)^(n+k) * S(n,k) = (-1)^(n+k) * T(n-k+1, k+1), as Tom Copeland states, Sum_{n,k >= 0} S^*(n,k)*t^n*x^k/n! = (1-t)*exp((1-x)*(-t)) = (1-t) * e^(-t) * e^(x*t).
Apparently, S*(n,k) = A103283(n,k).
As he says above, the signed n-th row polynomial is P(n,x) = (-1)^n*R(n,-x) = (x - 1)^n - n*(x - 1)^(n-1).
According to Gary W. Adamson, P(n,x) is "the monic characteristic polynomial of the n X n matrix with 2's on the diagonal and 1's elsewhere." (End)

A103247 Triangle read by rows: T(n,k) is the coefficient of x^k (0<=k<=n) in the monic characteristic polynomial of the n X n matrix with 3's on the diagonal and 1's elsewhere (n>=1). Row 0 consists of the single term 1.

Original entry on oeis.org

1, -3, 1, 8, -6, 1, -20, 24, -9, 1, 48, -80, 48, -12, 1, -112, 240, -200, 80, -15, 1, 256, -672, 720, -400, 120, -18, 1, -576, 1792, -2352, 1680, -700, 168, -21, 1, 1280, -4608, 7168, -6272, 3360, -1120, 224, -24, 1, -2816, 11520, -20736, 21504, -14112, 6048, -1680, 288, -27, 1, 6144, -28160, 57600, -69120, 53760, -28224, 10080, -2400, 360, -30, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 19 2005

Keywords

Comments

Row sums of the unsigned triangle yield A006234. The unsigned triangle is the mirror image of A103407.

Examples

			The monic characteristic polynomial of the matrix [3 1 1 / 1 3 1 / 1 1 3] is x^3 - 9x^2 + 24x - 20; so T(3,0)=-20, T(3,1)=24, T(3,2)=-9, T(3,3)=1.
Triangle begins:
  1;
  -3,1;
  8,-6,1;
  -20,24,-9,1;
  48,-80,48,-12,1;
  ...
		

Crossrefs

Programs

  • Maple
    with(linalg): a:=proc(i,j) if i=j then 3 else 1 fi end: 1;for n from 1 to 10 do seq(coeff(expand(x*charpoly(matrix(n,n,a),x)),x^k),k=1..n+1) od; # yields the sequence in triangular form
  • Mathematica
    M[n_] := Table[If[i == j, 3, 1], {i, 1, n}, {j, 1, n}];
    P[n_] := P[n] = CharacteristicPolynomial[M[n], x];
    row[n_] := row[n] = If[n == 0, {1}, CoefficientList[P[n]/Coefficient[P[n], x, n], x]];
    T[n_, k_] := row[n][[k]];
    Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 06 2024 *)

Formula

Appears to be the matrix product (I-S)*P^(-2), where I is the identity, P is Pascal's triangle A007318 and S is A132440, the infinitesimal generator of P. Cf. A055137 (= (I-S)*P) and A103283 (= (I-S)*P^(-1)). - Peter Bala, Nov 28 2011
Showing 1-4 of 4 results.